ﻻ يوجد ملخص باللغة العربية
We propose a Recursive Polynomial Generic Construction (RPGC) of multiplication algorithms in any finite field $mathbb{F}_{q^n}$ based on the method of D.V. and G.V. Chudnovsky specialized on the projective line. They are usual polynomial interpolation algorithms in small extensions and the Karatsuba algorithm is seen as a particular case of this construction. Using an explicit family of such algorithms, we show that their bilinear complexity is quasi-linear with respect to the extension degree n, and we give a uniform bound for this complexity. We also prove that the construction of these algorithms is deterministic and can be done in polynomial time. We give an asymptotic bound for the complexity of their construction.
We indicate a strategy in order to construct bilinear multiplication algorithms of type Chudnovsky in large extensions of any finite field. In particular, by using the symmetric version of the generalization of Randriambololona specialized on the ell
We propose several constructions for the original multiplication algorithm of D.V. and G.V. Chudnovsky in order to improve its scalar complexity. We highlight the set of generic strategies who underlay the optimization of the scalar complexity, accor
The Chudnovsky and Chudnovsky algorithm for the multiplication in extensions of finite fields provides a bilinear complexity which is uniformly linear whith respect to the degree of the extension. Recently, Randriambololona has generalized the method
Thanks to a new construction of the so-called Chudnovsky-Chudnovsky multiplication algorithm, we design efficient algorithms for both the exponentiation and the multiplication in finite fields. They are tailored to hardware implementation and they al
We give non-torsion counterexamples against the integral Tate conjecture for finite fields. We extend the result due to Pirutka and Yagita for prime numbers 2,3,5 to all prime numbers.