ﻻ يوجد ملخص باللغة العربية
The Chudnovsky and Chudnovsky algorithm for the multiplication in extensions of finite fields provides a bilinear complexity which is uniformly linear whith respect to the degree of the extension. Recently, Randriambololona has generalized the method, allowing asymmetry in the interpolation procedure and leading to new upper bounds on the bilinear complexity. We describe the effective algorithm of this asymmetric method, without derivated evaluation. Finally, we give examples with the finite field $F_{16^{13}}$ using only rational places, $F_{4^{13}}$ using also places of degree two and $F_{2^{13}}$ using also places of degree four.
We indicate a strategy in order to construct bilinear multiplication algorithms of type Chudnovsky in large extensions of any finite field. In particular, by using the symmetric version of the generalization of Randriambololona specialized on the ell
We propose a Recursive Polynomial Generic Construction (RPGC) of multiplication algorithms in any finite field $mathbb{F}_{q^n}$ based on the method of D.V. and G.V. Chudnovsky specialized on the projective line. They are usual polynomial interpolati
We propose several constructions for the original multiplication algorithm of D.V. and G.V. Chudnovsky in order to improve its scalar complexity. We highlight the set of generic strategies who underlay the optimization of the scalar complexity, accor
Thanks to a new construction of the so-called Chudnovsky-Chudnovsky multiplication algorithm, we design efficient algorithms for both the exponentiation and the multiplication in finite fields. They are tailored to hardware implementation and they al
We give non-torsion counterexamples against the integral Tate conjecture for finite fields. We extend the result due to Pirutka and Yagita for prime numbers 2,3,5 to all prime numbers.