ﻻ يوجد ملخص باللغة العربية
We calculate the Bose-Einstein condensate (BEC) occupation statistics vs. the interparticle interaction in a dilute gas with a nonuniform condensate in a box trap within the Bogoliubov approach. The results are compared against the previously found BEC-occupation statistics in (i) an ideal gas and (ii) a weakly interacting gas with a uniform condensate. In particular, we reveal and explicitly describe an appearance of a nontrivial transition from the ideal gas to the Thomas-Fermi regime. The results include finding the main regimes of the BEC statistics - the anomalous non-Gaussian thermally-dominated fluctuations and the Gaussian quantum-dominated fluctuations - as well as a crossover between them and their manifestations in a mesoscopic system. Remarkably, we show that the effect of the boundary conditions, imposed at the box trap, on the BEC fluctuations does not vanish in the thermodynamic limit of a macroscopic system even in the presence of the interparticle interactions. Finally, we discuss a challenging problem of an experimental verification of the theory of the BEC fluctuations addressing a much deeper level of the many-body statistical physics than usually studied quantities related to the mean condensate occupation.
We describe our experimental setup for creating stable Bose-Einstein condensates of Rb-85 with tunable interparticle interactions. We use sympathetic cooling with Rb-87 in two stages, initially in a tight Ioffe-Pritchard magnetic trap and subsequentl
We study the real-time dynamics of vortex lines in a large elongated Bose-Einstein condensate (BEC) of sodium atoms using a stroboscopic technique. Vortices are spontaneously produced via the Kibble-Zurek mechanism in a quench across the BEC transiti
For quantum fluids, the role of quantum fluctuations may be significant in several regimes such as when the dimensionality is low, the density is high, the interactions are strong, or for low particle numbers. In this paper we propose a fundamentally
We theoretically show that the topology of a non-simply-connected annular atomic Bose-Einstein condensate enforces the inner surface waves to be always excited with outer surface excitations and that the inner surface modes are associated with induce
Landaus description of the excitations in a macroscopic system in terms of quasiparticles stands out as one of the highlights in quantum physics. It provides an accurate description of otherwise prohibitively complex many-body systems, and has led to