ترغب بنشر مسار تعليمي؟ اضغط هنا

Vortex Dynamics in an Annular Bose-Einstein Condensate

242   0   0.0 ( 0 )
 نشر من قبل Sungjong Woo
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We theoretically show that the topology of a non-simply-connected annular atomic Bose-Einstein condensate enforces the inner surface waves to be always excited with outer surface excitations and that the inner surface modes are associated with induced vortex dipoles unlike the surface waves of a simply-connected one with vortex monopoles. Consequently, under stirring to drive an inner surface wave, a peculiar population oscillation between the inner and outer surface is generated regardless of annulus thickness. Moreover, a new vortex nucleation process by stirring is observed that can merge the inner vortex dipoles and outer vortex into a single vortex inside the annulus. The energy spectrum for a rotating annular condensate with a vortex at the center also reveals the distinct connection of the Tkachenko modes of a vortex lattice to its inner surface excitations.



قيم البحث

اقرأ أيضاً

We study the metastability and decay of multiply-charged superflow in a ring-shaped atomic Bose-Einstein condensate. Supercurrent corresponding to a giant vortex with topological charge up to q=10 is phase-imprinted optically and detected both interf erometrically and kinematically. We observe q=3 superflow persisting for up to a minute and clearly resolve a cascade of quantised steps in its decay. These stochastic decay events, associated with vortex-induced $2 pi$ phase slips, correspond to collective jumps of atoms between discrete q values. We demonstrate the ability to detect quantised rotational states with > 99 % fidelity, which allows a detailed quantitative study of time-resolved phase-slip dynamics. We find that the supercurrent decays rapidly if the superflow speed exceeds a critical velocity in good agreement with numerical simulations, and we also observe rare stochastic phase slips for superflow speeds below the critical velocity.
We study the real-time dynamics of vortex lines in a large elongated Bose-Einstein condensate (BEC) of sodium atoms using a stroboscopic technique. Vortices are spontaneously produced via the Kibble-Zurek mechanism in a quench across the BEC transiti on and then they slowly precess keeping their orientation perpendicular to the long axis of the trap as expected for solitonic vortices in a highly anisotropic condensate. Good agreement with theoretical predictions is found for the precession period as a function of the orbit amplitude and the number of condensed atoms. In configurations with two or more vortex lines, we see signatures of vortex-vortex interaction in the shape and visibility of the orbits. In addition, when more than two vortices are present, their decay is faster than the thermal decay observed for one or two vortices. The possible role of vortex reconnection processes is discussed.
We report experimental observations and numerical simulations of the formation, dynamics, and lifetimes of single and multiply charged quantized vortex dipoles in highly oblate dilute-gas Bose-Einstein condensates (BECs). We nucleate pairs of vortice s of opposite charge (vortex dipoles) by forcing superfluid flow around a repulsive gaussian obstacle within the BEC. By controlling the flow velocity we determine the critical velocity for the nucleation of a single vortex dipole, with excellent agreement between experimental and numerical results. We present measurements of vortex dipole dynamics, finding that the vortex cores of opposite charge can exist for many seconds and that annihilation is inhibited in our highly oblate trap geometry. For sufficiently rapid flow velocities we find that clusters of like-charge vortices aggregate into long-lived dipolar flow structures.
We perform finite-temperature dynamical simulations of the arrest of a rotating Bose-Einstein condensate by a fixed trap anisotropy, using a Hamiltonian classical-field method. We consider a quasi-two-dimensional condensate containing a single vortex in equilibrium with a rotating thermal cloud. Introducing an elliptical deformation of the trapping potential leads to the loss of angular momentum from the system. We identify the condensate and the complementary thermal component of the nonequilibrium field, and compare the evolution of their angular momenta and angular velocities. By varying the trap anisotropy we alter the relative efficiencies of the vortex-cloud and cloud-trap coupling. For strong trap anisotropies the angular momentum of the thermal cloud may be entirely depleted before the vortex begins to decay. For weak trap anisotropies, the thermal cloud exhibits a long-lived steady state in which it rotates at an intermediate angular velocity.
In a shaken Bose-Einstein condensate, confined in a vibrating trap, there can appear different nonlinear coherent modes. Here we concentrate on two types of such coherent modes, vortex ring solitons and vortex rings. In a cylindrical trap, vortex rin g solitons can be characterized as nonlinear Hermite-Laguerre modes, whose description can be done by means of optimized perturbation theory. The energy, required for creating vortex ring solitons, is larger than that needed for forming vortex rings. This is why, at a moderate excitation energy, vortex rings appear before vortex ring solitons. The generation of vortex rings is illustrated by numerical simulations for trapped $^{87}$Rb atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا