ﻻ يوجد ملخص باللغة العربية
We analyze a nonlinear $q$-voter model with stochastic noise, interpreted in the social context as independence, on a duplex network. The size of the lobby $q$ (i.e., the pressure group) is a crucial parameter that changes the behavior of the system. The $q$-voter model has been applied on multiplex networks in a previous work [Phys. Rev E. 92. 052812. (2015)], and it has been shown that the character of the phase transition depends on the number of levels in the multiplex network as well as the value of $q$. Here we study phase transition character in the case when on each level of the network the lobby size is different, resulting in two parameters $q_1$ and $q_2$. We find evidence of successive phase transitions when a continuous phase transition is followed by a discontinuous one or two consecutive discontinuous phases appear, depending on the parameter. When analyzing this system, we even encounter mixed-order (or hybrid) phase transition. We perform simulations and obtain supporting analytical solutions on a simple multiplex case - a duplex clique, which consists of two fully overlapped complete graphs (cliques).
We study a generalization of the voter model on complex networks, focusing on the scaling of mean exit time. Previous work has defined the voter model in terms of an initially chosen node and a randomly chosen neighbor, which makes it difficult to di
We study the voter model and related random-copying processes on arbitrarily complex network structures. Through a representation of the dynamics as a particle reaction process, we show that a quantity measuring the degree of order in a finite system
The Potts model is one of the most popular spin models of statistical physics. The prevailing majority of work done so far corresponds to the lattice version of the model. However, many natural or man-made systems are much better described by the top
We study the phase transition of the Ising model in networks with core-periphery structures. By Monte Carlo simulations, we show that prior to the order-disorder phase transition the system organizes into an inhomogeneous intermediate phase in which
In order to investigate the role of the weight in weighted networks, the collective behavior of the Ising system on weighted regular networks is studied by numerical simulation. In our model, the coupling strength between spins is inversely proportio