ﻻ يوجد ملخص باللغة العربية
In order to investigate the role of the weight in weighted networks, the collective behavior of the Ising system on weighted regular networks is studied by numerical simulation. In our model, the coupling strength between spins is inversely proportional to the corresponding weighted shortest distance. Disordering link weights can effectively affect the process of phase transition even though the underlying binary topological structure remains unchanged. Specifically, based on regular networks with homogeneous weights initially, randomly disordering link weights will change the critical temperature of phase transition. The results suggest that the redistribution of link weights may provide an additional approach to optimize the dynamical behaviors of the system.
The Potts model is one of the most popular spin models of statistical physics. The prevailing majority of work done so far corresponds to the lattice version of the model. However, many natural or man-made systems are much better described by the top
We study the phase transition of the Ising model in networks with core-periphery structures. By Monte Carlo simulations, we show that prior to the order-disorder phase transition the system organizes into an inhomogeneous intermediate phase in which
The Ising model on annealed complex networks with degree distribution decaying algebraically as $p(K)sim K^{-lambda}$ has a second-order phase transition at finite temperature if $lambda> 3$. In the absence of space dimensionality, $lambda$ controls
By means of the principle of minimal sensitivity we generalize the microcanonical inflection-point analysis method by probing derivatives of the microcanonical entropy for signals of transitions in complex systems. A strategy of systematically identi
The continuous ferromagnetic-paramagnetic phase transition in the two-dimensional Ising model has already been excessively studied by conventional canonical statistical analysis in the past. We use the recently developed generalized microcanonical in