ﻻ يوجد ملخص باللغة العربية
We investigate plasmon resonances for curved nanorods which present anisotropic geometries. We analyze quantitative properties of the plasmon resonance and its relationship to the metamaterial configurations and the anisotropic geometries of the nanorods. Based on delicate and subtle asymptotic and spectral analysis of the layer potential operators, particularly the Neumann-Poincare operators, associated with anisotropic geometries, we derive sharp asymptotic formulae of the corresponding scattering field in the quasi-static regime. By carefully analyzing the asymptotic formulae, we establish sharp conditions that can ensure the occurrence of the plasmonic resonance. The resonance conditions couple the metamaterial parameters, the wave frequency and the nanorod geometry in an intricate but elegant manner. We provide thorough resonance analysis by studying the wave fields both inside and outside the nanorod. Furthermore, our quantitative analysis indicates that different parts of the nanorod induce varying degrees of resonance. Specifically, the resonant strength at the two end-parts of the curved nanorod is more outstanding than that of the facade-part of the nanorod. This paper presents the first theoretical study on plasmon resonances for nanostructures within anisotropic geometries.
We study semiclassical resonances generated by homoclinic trapped sets. First, under some general assumptions, we prove that there is no resonance in a region below the real axis. Then, we obtain a quantization rule and the asymptotic expansion of th
We investigate a mathematical theory for the erosion of sediment which begins with the study of a non-linear, parabolic, weighted 4-Laplace equation on a rectangular domain corresponding to a base segment of an extended landscape. Imposing natural bo
In this paper we study the influence of an electric field on a two dimen-sional waveguide. We show that bound states that occur under a geometrical deformation of the guide turn into resonances when we apply an electric field of small intensity havin
We give the semiclassical asymptotic of barrier-top resonances for Schr{o}dinger operators on ${mathbb R}^{n}$, $n geq 1$, whose potential is $C^{infty}$ everywhere and analytic at infinity. In the globally analytic setting, this has already been obt
In this article, we study the strong well-posedness, stability and optimal control of an incompressible magneto-viscoelastic fluid model in two dimensions. The model consists of an incompressible Navier--Stokes equation for the velocity field, an evo