ﻻ يوجد ملخص باللغة العربية
We give the semiclassical asymptotic of barrier-top resonances for Schr{o}dinger operators on ${mathbb R}^{n}$, $n geq 1$, whose potential is $C^{infty}$ everywhere and analytic at infinity. In the globally analytic setting, this has already been obtained. Our proof is based on a propagation of singularities theorem at a hyperbolic fixed point that we establish here. This last result refines a theorem of the same authors, and its proof follows another approach.
We study semiclassical resonances generated by homoclinic trapped sets. First, under some general assumptions, we prove that there is no resonance in a region below the real axis. Then, we obtain a quantization rule and the asymptotic expansion of th
We consider co-rotational wave maps from (1+3)-dimensional Minkowski space into the three-sphere. This model exhibits an explicit blowup solution and we prove the asymptotic nonlinear stability of this solution in the whole space under small perturba
We investigate plasmon resonances for curved nanorods which present anisotropic geometries. We analyze quantitative properties of the plasmon resonance and its relationship to the metamaterial configurations and the anisotropic geometries of the nano
In this article we study the linearized anisotropic Calderon problem on a compact Riemannian manifold with boundary. This problem amounts to showing that products of pairs of harmonic functions of the manifold form a complete set. We assume that the
We investigate the influence of an electric field on trapped modes arising in a two-dimensional curved quantum waveguide ${bf Omega}$ i.e. bound states of the corresponding Laplace operator $-Delta_{{bf Omega}}$. Here the curvature of the guide is su