ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical traceback age of the $beta$ Pictoris moving group

79   0   0.0 ( 0 )
 نشر من قبل N\\'uria Miret-Roig
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context: The $beta$ Pictoris moving group is one of the most well-known young associations in the solar neighbourhood and several members are known to host circumstellar discs, planets, and comets. Measuring its age with precision is basic to study several astrophysical processes such as planet formation and disc evolution which are strongly age dependent. Aims: We aim to determine a precise and accurate dynamical traceback age for the $beta$ Pictoris moving group. Methods: Our sample combines the extremely precise Gaia DR2 astrometry with ground-based radial velocities measured in an homogeneous manner. We use an updated version of our algorithm to determine dynamical ages. The new approach takes into account a robust estimate of the spatial and kinematic covariance matrices of the association to improve the sample selection process and to perform the traceback analysis. Results: We estimate a dynamical age of $18.5_{-2.4}^{+2.0}$ Myr for the $beta$ Pictoris moving group. We investigated the spatial substructure of the association at birth time and we propose the existence of a core of stars more concentrated. We also provide precise radial velocity measurements for 81 members of $beta$ Pic, including ten stars with the first determination of their radial velocities. Conclusions: Our dynamical traceback age is three times more precise than previous traceback age estimates and, more important, for the first time, reconciles the traceback age with the most recent estimates of other dynamical, lithium depletion boundary, and isochronal ages. This has been possible thanks to the excellent astrometric and spectroscopic precisions, the homogeneity of our sample, and the detailed analysis of binaries and membership.



قيم البحث

اقرأ أيضاً

Jeffries & Binks (2014) and Malo et al. (2014) have recently reported Li depletion boundary (LDB) ages for the {beta} Pictoris moving group (BPMG) which are twice as old as the oft-cited kinematic age of $sim$12 Myr. In this study we present (1) a ne w evaluation of the internal kinematics of the BPMG using the revised Hipparcos astrometry and best available published radial velocities, and assess whether a useful kinematic age can be derived, and (2) derive an isochronal age based on the placement of the A-, F- and G-type stars in the colour-magnitude diagram (CMD). We explore the kinematics of the BPMG looking at velocity trends along Galactic axes, and conducting traceback analyses assuming linear trajectories, epicyclic orbit approximation, and orbit integration using a realistic gravitational potential. None of the methodologies yield a kinematic age with small uncertainties using modern velocity data. Expansion in the Galactic X and Y directions is significant only at the 1.7{sigma} and 2.7{sigma} levels, and together yields an overall kinematic age with a wide range (13-58 Myr; 95 per cent CL). The A-type members are all on the zero age-main-sequence, suggestive of an age of $>$20Myr, and the loci of the CMD positions for the late-F- and G-type pre-main-sequence BPMG members have a median isochronal age of 22 Myr ($pm$ 3 Myr stat., $pm$ 1 Myr sys.) when considering four sets of modern theoretical isochrones. The results from recent LDB and isochronal age analyses are now in agreement with a median BPMG age of 23 $pm$ 3 Myr (overall 1{sigma} uncertainty, including $pm$2 Myr statistical and $pm$2 Myr systematic uncertainties).
PSO J318.5338$-$22.8603 is an extremely-red planetary-mass object that has been identified as a candidate member of the $beta$ Pictoris moving group based on its spatial position and tangential velocity. We present a high resolution $K$-band spectrum of PSO J318.5338$-$22.8603. Using a forward-modeling Markov Chain Monte Carlo approach, we report the first measurement of the radial velocity and $v$ sin($i$) of PSO J318.5$-$22, $-$6.0$^{+0.8}_{-1.1}$ km s$^{-1}$ and 17.5$^{+2.3}_{-2.8}$ km s$^{-1}$, respectively. We calculate the space velocity and position of PSO J318.5$-$22 and confirm that it is a member of the $beta$ Pictoris moving group. Adopting an age of 23$pm$3 Myr for PSO J318.5$-$22, we determine a mass of $8.3pm0.5$ $M_{rm{Jup}}$ and effective temperature of $1127^{+24}_{-26}$ K using evolutionary models. PSO J318.5338$-$22.8603 is intermediate in mass and temperature to the directly-imaged planets $beta$ Pictoris b and 51 Eridani b, making it an important benchmark object in the sequence of planetary-mass members of the $beta$ Pictoris moving group. Combining our $v$ sin($i$) measurement with recent photometric variability data, we constrain the inclination of PSO J318.5$-$22 to $>29^{circ}$ and its rotational period to 5-10.2 hours. The equatorial velocity of PSO J318.5$-$22 indicates that its rotation is consistent with an extrapolation of the velocity-mass relationship for solar system planets.
160 - L. M. Rebull 2008
We present Multiband Imaging Photometer for Spitzer (MIPS) observations at 24 and 70 microns for 30 stars, and at 160 microns for a subset of 12 stars, in the nearby (~30 pc), young (~12 Myr) Beta Pictoris Moving Group (BPMG). In several cases, the n ew MIPS measurements resolve source confusion and background contamination issues in the IRAS data for this sample. We find that 7 members have 24 micron excesses, implying a debris disk fraction of 23%, and that at least 11 have 70 micron excesses (disk fraction of >=37%). Five disks are detected at 160 microns (out of a biased sample of 12 stars observed), with a range of 160/70 flux ratios. The disk fraction at 24 and 70 microns, and the size of the excesses measured at each wavelength, are both consistent with an inside-out infrared excess decrease with time, wherein the shorter-wavelength excesses disappear before longer-wavelength excesses, and consistent with the overall decrease of infrared excess frequency with stellar age, as seen in Spitzer studies of other young stellar groups. Assuming that the infrared excesses are entirely due to circumstellar disks, we characterize the disk properties using simple models and fractional infrared luminosities. Optically thick disks, seen in the younger TW Hya and eta Cha associations, are entirely absent in the BPMG. Additional flux density measurements at 24 and 70 microns are reported for nine Tucanae-Horologium Association member stars. Since this is <20% of the association membership, limited analysis on the complete disk fraction of this association is possible.
283 - R. Nilsson 2009
The Beta Pictoris Moving Group is a nearby stellar association of young (12Myr) co-moving stars including the classical debris disk star beta Pictoris. Due to their proximity and youth they are excellent targets when searching for submillimetre emiss ion from cold, extended, dust components produced by collisions in Kuiper-Belt-like disks. They also allow an age independent study of debris disk properties as a function of other stellar parameters. We observed 7 infrared-excess stars in the Beta Pictoris Moving Group with the LABOCA bolometer array, operating at a central wavelength of 870 micron at the 12-m submillimetre telescope APEX. The main emission at these wavelengths comes from large, cold dust grains, which constitute the main part of the total dust mass, and hence, for an optically thin case, make better estimates on the total dust mass than earlier infrared observations. Fitting the spectral energy distribution with combined optical and infrared photometry gives information on the temperature and radial extent of the disk. From our sample, beta Pic, HD181327, and HD172555 were detected with at least 3-sigma certainty, while all others are below 2-sigma and considered non-detections. The image of beta Pic shows an offset flux density peak located near the south-west extension of the disk, similar to the one previously found by SCUBA at the JCMT. We present SED fits for detected sources and give an upper limit on the dust mass for undetected ones. We find a mean fractional dust luminosity f_dust=11x10^{-4} at t=12Myr, which together with recent data at 100Myr suggests an f_dust propto t^{-alpha} decline of the emitting dust, with alpha > 0.8.
The young and nearby star beta Pictoris (beta Pic) is surrounded by a debris disk composed of dust and gas known to host a myriad evaporating exocomets, planetesimals and at least one planet. At an edge-on inclination, as seen from Earth, this system is ideal for debris disk studies providing an excellent opportunity to use absorption spectroscopy to study the planet forming environment. Using the Cosmic Origins Spectrograph (COS) instrument on the Hubble Space Telescope (HST) we observe the most abundant element in the disk, hydrogen, through the HI Lyman alpha (Ly-alpha) line. We present a new technique to decrease the contamination of the Ly-alpha line by geocoronal airglow in COS spectra. This Airglow Virtual Motion (AVM) technique allows us to shift the Ly-alpha line of the astrophysical target away from the contaminating airglow emission revealing more of the astrophysical line profile. The column density of hydrogen in the beta Pic stable gas disk at the stellar radial velocity is measured to be $log(N_{mathrm{H}}/1 mathrm{cm}^2) ll 18.5$. The Ly-alpha emission line profile is found to be asymmetric and we propose that this is caused by HI falling in towards the star with a bulk radial velocity of $41pm6$ km/s relative to beta Pic and a column density of $log(N_{mathrm{H}}/1 mathrm{cm}^2) = 18.6pm0.1$. The high column density of hydrogen relative to the hydrogen content of CI chondrite meteorites indicates that the bulk of the hydrogen gas does not come from the dust in the disk. This column density reveals a hydrogen abundance much lower than solar, which excludes the possibility that the detected hydrogen could be a remnant of the protoplanetary disk or gas expelled by the star. We hypothesise that the hydrogen gas observed falling towards the star arises from the dissociation of water originating from evaporating exocomets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا