ﻻ يوجد ملخص باللغة العربية
Jeffries & Binks (2014) and Malo et al. (2014) have recently reported Li depletion boundary (LDB) ages for the {beta} Pictoris moving group (BPMG) which are twice as old as the oft-cited kinematic age of $sim$12 Myr. In this study we present (1) a new evaluation of the internal kinematics of the BPMG using the revised Hipparcos astrometry and best available published radial velocities, and assess whether a useful kinematic age can be derived, and (2) derive an isochronal age based on the placement of the A-, F- and G-type stars in the colour-magnitude diagram (CMD). We explore the kinematics of the BPMG looking at velocity trends along Galactic axes, and conducting traceback analyses assuming linear trajectories, epicyclic orbit approximation, and orbit integration using a realistic gravitational potential. None of the methodologies yield a kinematic age with small uncertainties using modern velocity data. Expansion in the Galactic X and Y directions is significant only at the 1.7{sigma} and 2.7{sigma} levels, and together yields an overall kinematic age with a wide range (13-58 Myr; 95 per cent CL). The A-type members are all on the zero age-main-sequence, suggestive of an age of $>$20Myr, and the loci of the CMD positions for the late-F- and G-type pre-main-sequence BPMG members have a median isochronal age of 22 Myr ($pm$ 3 Myr stat., $pm$ 1 Myr sys.) when considering four sets of modern theoretical isochrones. The results from recent LDB and isochronal age analyses are now in agreement with a median BPMG age of 23 $pm$ 3 Myr (overall 1{sigma} uncertainty, including $pm$2 Myr statistical and $pm$2 Myr systematic uncertainties).
Context: The $beta$ Pictoris moving group is one of the most well-known young associations in the solar neighbourhood and several members are known to host circumstellar discs, planets, and comets. Measuring its age with precision is basic to study s
Context. Debris discs are thought to be formed through the collisional grinding of planetesimals, and can be considered as the outcome of planet formation. Understanding the properties of gas and dust in debris discs can help us to comprehend the arc
We present Multiband Imaging Photometer for Spitzer (MIPS) observations at 24 and 70 microns for 30 stars, and at 160 microns for a subset of 12 stars, in the nearby (~30 pc), young (~12 Myr) Beta Pictoris Moving Group (BPMG). In several cases, the n
Aims: We carried out high-resolution spectroscopy and BV(I)_C photometric monitoring of the two fastest late-type rotators in the nearby Beta Pictoris moving group, HD199143 (F7V) and CD-641208 (K7V). The motivation for this work is to investigate th
The Beta Pictoris Moving Group is a nearby stellar association of young (12Myr) co-moving stars including the classical debris disk star beta Pictoris. Due to their proximity and youth they are excellent targets when searching for submillimetre emiss