ﻻ يوجد ملخص باللغة العربية
Chemical modification, such as intercalation or doping of novel materials is of great importance for exploratory material science and applications in various fields of physics and chemistry. In the present work, we report the systematic intercalation of chemically exfoliated few-layer graphene with potassium while monitoring the sample resistance using microwave conductivity. We find that the conductivity of the samples increases by about an order of magnitude upon potassium exposure. The increased of number of charge carriers deduced from the ESR intensity also reflects this increment. The doped phases exhibit two asymmetric Dysonian lines in ESR, a usual sign of the presence of mobile charge carriers. The width of the broader component increases with the doping steps, however, the narrow components seem to have a constant line width.
The inter-Landau level transitions observed in far-infrared transmission experiments on few-layer graphene samples show a behaviour characteristic of the linear dispersion expected in graphene. This behaviour persists in relatively thick samples, and
Two-dimensional (2D) antimony (Sb, antimonene) recently attracted interest due to its peculiar electronic properties and its suitability as anode material in next generation batteries. Sb however exhibits a large polymorphic/allotropic structural div
The thermal conductivity of suspended few-layer hexagonal boron nitride (h-BN) was measured using a micro-bridge device with built-in resistance thermometers. Based on the measured thermal resistance values of 11-12 atomic layer h-BN samples with sus
Growing uniform oxides with various thickness on TMDs is one of the biggest challenges to integrate TMDs into complementary metal oxide semiconductor (CMOS) logic circuits. Here, we report a layer-by-layer oxidation of atomically thin MoTe2 flakes vi
We report on the use of time-resolved optical ellipsometry to monitor the deposition of single atomic layers with subatomic sensitivity. Ruddlesden-Popper thin films of SrO(SrTiO3)n=4 were grown by means of metalorganic aerosol deposition in the atom