ﻻ يوجد ملخص باللغة العربية
The paper reports fabrication of Germanium-on-Insulator (GeOI) wafer by Oxygen ion implantation of an undoped single crystalline Ge wafer of orientation (100). Oxygen ions of energy 200 keV were implanted. The implanted wafer was subjected to Rapid Thermal Annealing to 650 C. The resulting wafer has a top crystalline Ge layer of 220 nm thickness and Buried Oxide layer (BOX) layer of good quality crystalline Germanium oxide with thickness around 0.62 micron. The crystalline BOX layer has hexagonal crystal structure with lattice constants close to the standard values. Raman Spectroscopy, cross-sectional HRTEM with SAED and EDS established that the top Ge layer was recrystallized during annealing with faceted crystallites. The top layer has a small tensile strain of around +0.4% and has estimated dislocation density of 2.7 x 10^{7}cm^{-2}. The thickness, crystallinity and electrical characteristics of the top layer and the quality of the BOX layer of GeO_{2} are such that it can be utilized for device fabrication.
The integration of ferromagnetic Mn5Ge3 with the Ge matrix is promising for spin injection in a silicon-compatible geometry. In this paper, we report the preparation of magnetic Mn5Ge3 nanocrystals embedded inside the Ge matrix by Mn ions implantatio
Germanium is emerging as the substrate of choice for the growth of graphene in CMOS-compatible processes. For future application in next generation devices the accurate control over the properties of high-quality graphene synthesized on Ge surfaces,
The electronic properties of thin metallic films deviate from the corresponding bulk ones when the film thickness is comparable with the wavelength of the electrons at the Fermi level due to quantum size effects (QSE). QSE are expected to affect the
Enhancement-mode Si/SiGe electron quantum dots have been pursued extensively by many groups for revEdit{their} potential in quantum computing. Most of the reported dot designs utilize multiple metal-gate layers and use Si/SiGe heterostructures with G
We realize Mn $delta$-doping into Si and Si/Ge interfaces using Mn atomic chains on Si(001). Highly sensitive X-ray absorption fine structure techniques reveal that encapsulation at room temperature prevents the formation of silicides / germanides wh