ﻻ يوجد ملخص باللغة العربية
The integration of ferromagnetic Mn5Ge3 with the Ge matrix is promising for spin injection in a silicon-compatible geometry. In this paper, we report the preparation of magnetic Mn5Ge3 nanocrystals embedded inside the Ge matrix by Mn ions implantation at elevated temperature. By X-ray diffraction and transmission electron microscopy, we observe crystalline Mn5Ge3 with variable size depending on the Mn ion fluence. The electronic structure of Mn in Mn5Ge3 nanocrystals is 3d6 configuration, the same as in bulk Mn5Ge3. A large positive magnetoresistance has been observed at low temperatures. It can be explained by the conductivity inhomogeneity in the magnetic/semiconductor hybrid system.
The paper reports fabrication of Germanium-on-Insulator (GeOI) wafer by Oxygen ion implantation of an undoped single crystalline Ge wafer of orientation (100). Oxygen ions of energy 200 keV were implanted. The implanted wafer was subjected to Rapid T
X-ray photoelectron spectroscopy (XPS) and resonant x-ray emission spectroscopy (RXES) measurements of pellet and thin film forms of TiO$_2$ with implanted Fe ions are presented and discussed. The findings indicate that Fe-implantation in a TiO$_2$ p
In this paper, we discuss the results of our study of the synthesis of endohedral iron-fullerenes. A low energy Fe+ ion beam was irradiated to C60 thin film by using a deceleration system. Fe+-irradiated C60 thin film was analyzed by high performance
This is the abstract. The results of measurements of X-ray photoelectron spectra (XPS) of a-SiO2-host material after pulsed implantation with [Mn+] and [Co+, Mn+]-ions as well as DFT-calculations are presented. The low-energy shift is found in XPS Si
Ferromagnetic resonance (FMR) was used to investigate the static and dynamic magnetic properties of carbon-doped Mn5Ge3 (C$_{0.1}$ and C$_{0.2}$) thin films grown on Ge(111). The temperature dependence of magnetic anisotropy shows an increased perpen