ﻻ يوجد ملخص باللغة العربية
We performed calculations of the electronic band structure and the Fermi surface as well as measured the longitudinal resistivity rhoxx(T,H), Hall resistivity rhoxy(T,H) and quantum oscillations of the magnetization as a function of temperature at various magnetic fields for MoO2 with monoclinic crystal structure. The band structure calculations show that MoO2 is a nodal-line semimetal when spin-orbit coupling is ignored. It was found that a large magnetoresistance reaching 5.03x10^4% at 2 K and 9 T, its nearly quadratic field dependence and a field-induced up-turn behavior of rhoxx(T), the characteristics common for many topologically non-trivial as well as trivial semimetals, emerge also in MoO2. The observed properties are attributed to a perfect charge-carrier compensation, evidenced by both calculations relying on the Fermi surface topology and the Hall resistivity measurements. Both the observation of negative magnetoresistance for magnetic field along the current direction and the non-zero Berry phase in de Haas-van Alphen measurements indicate that pairs of Weyl points appear in MoO2, which may be due to the crystal symmetry breaking. These results highlight MoO2 as a new platform materials for studying the topological properties of oxides.
The topological nodal-line semimetals (NLSMs) possess a loop of Dirac nodes in the k space with linear dispersion, different from the point nodes in Dirac/Weyl semimetals. While the quantum transport associated with the topologically nontrivial Dirac
We instigate the angle-dependent magnetoresistance (AMR) of the layered nodal-line Dirac semimetal ZrSiS for the in-plane and out-of-plane current directions. This material has recently revealed an intriguing butterfly-shaped in-plane AMR that is not
Several early transition metal dipnictides have been found to host topological semimetal states and exhibit large magnetoresistance. In this study, we use angle-resolved photoemission spectroscopy (ARPES) and magneto-transport to study the electronic
Weyl semimetal emerges as a new topologically nontrivial phase of matter, hosting low-energy excitations of massless Weyl fermions. Here, we present a comprehensive study of the type-II Weyl semimetal WP2. Transport studies show a butterfly-like magn
We performed calculations of the electronic band structure and the Fermi surface as well as measured the longitudinal resistivity $rho_{xx}(T,H)$, Hall resistivity $rho_{xy}(T,H)$, and magnetic susceptibility as a function of temperature and various