ﻻ يوجد ملخص باللغة العربية
We report on the precise integration of nm-scale topological insulator Josephson junctions into mm-scale superconducting quantum circuits via selective area epitaxy and local stencil lithography. By studying dielectric losses of superconducting microwave resonators fabricated on top of our selective area growth mask, we verify the compatibility of this in situ technique with microwave applications. We probe the microwave response of on-chip microwave cavities coupled to topological insulator-shunted superconducting qubit devices and observe a power dependence that indicates nonlinear qubit behaviour. Our method enables integration of complex networks of topological insulator nanostructures into superconducting circuits, paving the way for both novel voltage-controlled Josephson and topological qubits.
Universal conductance fluctuations and the weak antilocalization effect are defect structure specific fingerprints in the magnetoconductance that are caused by electron interference. Experimental evidence is presented that the conductance fluctuation
We report the fabrication and characterization of superconducting quantum interference devices (SQUIDs) made of Sb-doped Bi2Se3 topological insulator (TI) nanoribbon (NR) contacted with PbIn superconducting electrodes. When an external magnetic field
We introduce selective area grown hybrid InAs/Al nanowires based on molecular beam epitaxy, allowing arbitrary semiconductor-superconductor networks containing loops and branches. Transport reveals a hard induced gap and unpoisoned 2e-periodic Coulom
When a topological insulator (TI) is made into a nanowire, the interplay between topology and size quantization gives rise to peculiar one-dimensional (1D) states whose energy dispersion can be manipulated by external fields. With proximity-induced s
A two-component fermion model with conventional two-body interactions was recently shown to have anyonic excitations. We here propose a scheme to physically implement this model by transforming each chain of two two-component fermions to the two capa