ﻻ يوجد ملخص باللغة العربية
When a topological insulator (TI) is made into a nanowire, the interplay between topology and size quantization gives rise to peculiar one-dimensional (1D) states whose energy dispersion can be manipulated by external fields. With proximity-induced superconductivity, these 1D states offer a tunable platform for Majorana zero modes (MZMs) that can be robust even in the presence of disorder. While the realization of the peculiar 1D states was recently confirmed, realization of robust proximity-induced superconductivity in TI nanowires remains a challenge. Here we report novel realization of superconducting TI nanowires based on (Bi$_{1-x}$Sb$_x$)$_2$Te$_3$ (BST) thin films: When two rectangular pads of Pd are deposited on a BST thin film with a separation of 100 - 200 nm, the BST beneath the pads is converted into a superconductor, leaving a nanowire of BST in-between. We found that the interface is epitaxial and has a high electronic transparency, leading to a robust superconductivity induced in the BST nanowire. Due to its suitable geometry for gate-tuning, this new platform is promising for future studies of MZMs.
The non-trivial topology of the three-dimensional (3D) topological insulator (TI) dictates the appearance of gapless Dirac surface states. Intriguingly, when a 3D TI is made into a nanowire, a gap opens at the Dirac point due to the quantum confineme
Wireless technology relies on the conversion of alternating electromagnetic fields to direct currents, a process known as rectification. While rectifiers are normally based on semiconductor diodes, quantum mechanical non-reciprocal transport effects
Using the superconducting proximity effect for engineering a topological superconducting state in a topological insulator (TI) is a promising route to realize Majorana fermions. However, epitaxial growth of a superconductor on the TI surface to achie
Topological insulators are expected to be a promising platform for novel quantum phenomena, whose experimental realizations require sophisticated devices. In this Technical Review, we discuss four topics of particular interest for TI devices: topolog
We show that Floquet chiral topological superconductivity arises naturally in Josephson junctions made of magnetic topological insulator-superconductor sandwich structures. The Josephson phase modulation associated with an applied bias voltage across