ﻻ يوجد ملخص باللغة العربية
We present here the analysis of giant micropulses from the Vela pulsar. A total of 4187 giant micropulses with peak flux density $>$2.5 Jy were detected during almost 4 hours of observations carried out with the Yunnan 40-m radio telescope at 6800 MHz. Nine of the giant micropulses arrived approximately 3 to 4 ms earlier than the peak of average pulse profile, longer than that at lower frequencies. The remaining giant micropulses were clustered into three distributions which correspond to three main emission regions, including four occurring on the trailing edge of averaged profile.
We present direct upper limits on continuous gravitational wave emission from the Vela pulsar using data from the Virgo detectors second science run. These upper limits have been obtained using three independent methods that assume the gravitational
Pulsars are known to power winds of relativistic particles that can produce bright nebulae by interacting with the surrounding medium. These pulsar wind nebulae (PWNe) are observed in the radio, optical, x-rays and, in some cases, also at TeV energie
We have studied the fascinating dynamics of the nearby Vela pulsars nebula in a campaign comprising eleven 40ks observations with Chandra X-ray Observatory (CXO). The deepest yet images revealed the shape, structure, and motion of the 2-arcminute-lon
We present the results of the simultaneous observation of the giant radio pulses (GRPs) from the Crab pulsar at 0.3, 1.6, 2.2, 6.7, and 8.4 GHz with four telescopes in Japan. We obtain 3194 and 272 GRPs occurring at the main pulse and the interpulse
Context The Vela Molecular Ridge is one of the nearest (700 pc) giant molecular cloud (GMC) complexes hosting intermediate-mass (up to early B, late O stars) star formation, and is located in the outer Galaxy, inside the Galactic plane. Vela C is one