ﻻ يوجد ملخص باللغة العربية
We study the space complexity of solving the bias-regularized SVM problem in the streaming model. This is a classic supervised learning problem that has drawn lots of attention, including for developing fast algorithms for solving the problem approximately. One of the most widely used algorithms for approximately optimizing the SVM objective is Stochastic Gradient Descent (SGD), which requires only $O(frac{1}{lambdaepsilon})$ random samples, and which immediately yields a streaming algorithm that uses $O(frac{d}{lambdaepsilon})$ space. For related problems, better streaming algorithms are only known for smooth functions, unlike the SVM objective that we focus on in this work. We initiate an investigation of the space complexity for both finding an approximate optimum of this objective, and for the related ``point estimation problem of sketching the data set to evaluate the function value $F_lambda$ on any query $(theta, b)$. We show that, for both problems, for dimensions $d=1,2$, one can obtain streaming algorithms with space polynomially smaller than $frac{1}{lambdaepsilon}$, which is the complexity of SGD for strongly convex functions like the bias-regularized SVM, and which is known to be tight in general, even for $d=1$. We also prove polynomial lower bounds for both point estimation and optimization. In particular, for point estimation we obtain a tight bound of $Theta(1/sqrt{epsilon})$ for $d=1$ and a nearly tight lower bound of $widetilde{Omega}(d/{epsilon}^2)$ for $d = Omega( log(1/epsilon))$. Finally, for optimization, we prove a $Omega(1/sqrt{epsilon})$ lower bound for $d = Omega( log(1/epsilon))$, and show similar bounds when $d$ is constant.
Product measures of dimension $n$ are known to be concentrated in Hamming distance: for any set $S$ in the product space of probability $epsilon$, a random point in the space, with probability $1-delta$, has a neighbor in $S$ that is different from t
An ordering constraint satisfaction problem (OCSP) is given by a positive integer $k$ and a constraint predicate $Pi$ mapping permutations on ${1,ldots,k}$ to ${0,1}$. Given an instance of OCSP$(Pi)$ on $n$ variables and $m$ constraints, the goal is
We give tight cell-probe bounds for the time to compute convolution, multiplication and Hamming distance in a stream. The cell probe model is a particularly strong computational model and subsumes, for example, the popular word RAM model. We first
We present algorithmic results for the parallel assembly of many micro-scale objects in two and three dimensions from tiny particles, which has been proposed in the context of programmable matter and self-assembly for building high-yield micro-factor
We consider minimum-cardinality Manhattan connected sets with arbitrary demands: Given a collection of points $P$ in the plane, together with a subset of pairs of points in $P$ (which we call demands), find a minimum-cardinality superset of $P$ such