ﻻ يوجد ملخص باللغة العربية
For generation of sustainable, clean and highly efficient energy, the electrocatalytic oxygen evolution reaction represents an attractive platform, thus inviting immense research activities in recent years. However, designing the catalyst with enhanced electrocatalytic activity remains one of the major challenges. Here, we examined the oxygen evolution reaction activities of geometrically designed (with and without step-textured morphology) thin films of an electrocatalytically active correlated metallic SrRuO3 perovskite grown on c- and r-plane sapphire substrates. On c-plane sapphire, as compared to the uniform surface, the step-textured films endowed with active Ru-sites show remarkable decrease in the overpotential (25 mV). Interestingly, the behavior is opposite for the r-plane case, highlighting the significance of the active sites, in addition with the polar surface termination of selective crystal facets. Density functional theory calculation confirms the favorable energy reaction pathway for the active site dependent enhancement in OER. Our strategy might pave the way towards designing the surfaces of various oxide thin films for high performance energy conversion based devices.
Transition metal oxides have been extensively studied and utilized as efficient catalysts. However, the strongly correlated behavior which often results in intriguing emergent phenomena in these materials has been mostly overlooked in understanding t
Lattice structure can dictate electronic and magnetic properties of a material. Especially, reconstruction at a surface or heterointerface can create properties that are fundamentally different from those of the corresponding bulk material. We have i
The electronic properties of SrRuO3/LaAlO3 (SRO/LAO) superlattices with different interlayer thicknesses of SRO layers were studied. As the thickness of SRO layers is reduced, the superlattices exhibit a metal-insulator transition implying transforma
Atomically thin ferromagnetic and conducting electron systems are highly desired for spintronics, because they can be controlled with both magnetic and electric fields. We present (SrRuO3)1-(SrTiO3)5 superlattices and single-unit-cell-thick SrRuO3 sa
The interrelation between the epitaxial strain and oxygen deficiency in La0.7Ca0.3MnO3-{delta} thin films was studied in terms of structural and functional properties. The films with a thickness of 1000{AA} were prepared using a PLD system equipped w