ترغب بنشر مسار تعليمي؟ اضغط هنا

Ferromagnetism and conductivity in atomically thin SrRuO3

121   0   0.0 ( 0 )
 نشر من قبل Hans Boschker
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Atomically thin ferromagnetic and conducting electron systems are highly desired for spintronics, because they can be controlled with both magnetic and electric fields. We present (SrRuO3)1-(SrTiO3)5 superlattices and single-unit-cell-thick SrRuO3 samples that are capped with SrTiO3. We achieve samples of exceptional quality. In these samples, the electron systems comprise only a single RuO2 plane. We observe conductivity down to 50 mK, a ferromagnetic state with a Curie temperature of 25 K, and signals of magnetism persisting up to approximately 100 K.



قيم البحث

اقرأ أيضاً

105 - Sisi Li , Qinghua Zhang , Shan Lin 2020
Low-dimensional quantum materials that remain strongly ferromagnetic down to mono layer thickness are highly desired for spintronic applications. Although oxide materials are important candidates for next generation of spintronic, ferromagnetism deca ys severely when the thickness is scaled to the nano meter regime, leading to deterioration of device performance. Here we report a methodology for maintaining strong ferromagnetism in insulating LaCoO3 (LCO) layers down to the thickness of a single unit cell. We find that the magnetic and electronic states of LCO are linked intimately to the structural parameters of adjacent breathing lattice SrCuO2 (SCO). As the dimensionality of SCO is reduced, the lattice constant elongates over 10% along the growth direction, leading to a significant distortion of the CoO6 octahedra, and promoting a higher spin state and long-range spin ordering. For atomically thin LCO layers, we observe surprisingly large magnetic moment (0.5 uB/Co) and Curie temperature (75 K), values larger than previously reported for any mono layer oxide. Our results demonstrate a strategy for creating ultra thin ferromagnetic oxides by exploiting atomic hetero interface engineering,confinement-driven structural transformation, and spin-lattice entanglement in strongly correlated materials.
Lattice structure can dictate electronic and magnetic properties of a material. Especially, reconstruction at a surface or heterointerface can create properties that are fundamentally different from those of the corresponding bulk material. We have i nvestigated the lattice structure on the surface and in the thin films of epitaxial SrRuO3 with the film thickness up to 22 pseudo-cubic unit cells (u.c.), using the combination of surface sensitive low energy electron diffraction and bulk sensitive scanning transmission electron microscopy. Our analysis indicates that, in contrast to many perovskite oxides, the RuO6 tilt and rotational distortions appear even in single unit cell SrRuO3 thin films on cubic SrTiO3, while the full relaxation to the bulk-like orthorhombic structure takes 3-4 u.c. from the interface for thicker films. Yet the TiO6 octahedra of the substrate near the interface with SrRuO3 films show no sign of distortion, unlike those near the interface with CaRuO3 films. Two orthogonal in-plane rotated structural domains are identified. These structural distortions are essential for the nature of the thickness dependent transport and magnetism in ultrathin films.
For generation of sustainable, clean and highly efficient energy, the electrocatalytic oxygen evolution reaction represents an attractive platform, thus inviting immense research activities in recent years. However, designing the catalyst with enhanc ed electrocatalytic activity remains one of the major challenges. Here, we examined the oxygen evolution reaction activities of geometrically designed (with and without step-textured morphology) thin films of an electrocatalytically active correlated metallic SrRuO3 perovskite grown on c- and r-plane sapphire substrates. On c-plane sapphire, as compared to the uniform surface, the step-textured films endowed with active Ru-sites show remarkable decrease in the overpotential (25 mV). Interestingly, the behavior is opposite for the r-plane case, highlighting the significance of the active sites, in addition with the polar surface termination of selective crystal facets. Density functional theory calculation confirms the favorable energy reaction pathway for the active site dependent enhancement in OER. Our strategy might pave the way towards designing the surfaces of various oxide thin films for high performance energy conversion based devices.
We determine the zero temeperature phase diagram of excitons in the symmetric transition-metal dichalcogenide tri-layer heterosctructure WSe2/MoSe2/WSe2. First principle calculations reveal two distinct types of interlayer excitonic states, a lower e nergy symmetric quadrupole and a higher energy asymmetric dipole. While interaction between quadrupolar excitons is always repulsive, anti-parallel dipolar excitons attract at large distances. We find quantum phase transitions between a repulsive quadrupole lattice phase and a staggered (anti-parallel) dipolar lattice phase, driven by the competition between the exciton-exciton interactions and the single exciton energies. Remarkably, the intrinsic nature of each interlayer exciton is completely different in each phase. This is a striking example for the possible rich quantum physics in a system where the single particle properties and the many-body state are dynamically coupled through the particle interactions.
176 - Z.Q.Liu , M.Yang , W.M.Lu 2013
The electronic properties of SrRuO3/LaAlO3 (SRO/LAO) superlattices with different interlayer thicknesses of SRO layers were studied. As the thickness of SRO layers is reduced, the superlattices exhibit a metal-insulator transition implying transforma tion into a more localized state from its original bulk metallic state. The strain effect on the metal-insulator transition was also examined. The origin of the metal-insulator transition in ultrathin SRO film is discussed. All the superlattices, even those with SRO layers as thin as 2 unit cells, are ferromagnetic at low temperatures. Moreover, we demonstrate field effect devices based on such multilayer superlattice structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا