ﻻ يوجد ملخص باللغة العربية
It is commonly assumed that the energy density of the Universe was dominated by radiation between reheating after inflation and the onset of matter domination 54,000 years later. While the abundance of light elements indicates that the Universe was radiation dominated during Big Bang Nucleosynthesis (BBN), there is scant evidence that the Universe was radiation dominated prior to BBN. It is therefore possible that the cosmological history was more complicated, with deviations from the standard radiation domination during the earliest epochs. Indeed, several interesting proposals regarding various topics such as the generation of dark matter, matter-antimatter asymmetry, gravitational waves, primordial black holes, or microhalos during a nonstandard expansion phase have been recently made. In this paper, we review various possible causes and consequences of deviations from radiation domination in the early Universe - taking place either before or after BBN - and the constraints on them, as they have been discussed in the literature during the recent years.
Spectral distortions of the cosmic microwave background (CMB) provide a unique tool for learning about the early phases of cosmic history, reaching deep into the primordial Universe. At redshifts $z<10^6$, thermalization processes become inefficient
The standard cosmological model successfully describes many observations from widely different epochs of the Universe, from primordial nucleosynthesis to the accelerating expansion of the present day. However, as the basic cosmological parameters of
In this work we analyse in detail the possibility of using small and intermediate-scale gravitational wave anisotropies to constrain the inflationary particle content. First, we develop a phenomenological approach focusing on anisotropies generated b
We have shown (Colin et al., 2019) that the acceleration of the Hubble expansion rate inferred from Type Ia supernovae (SNe Ia) is, at $3.9sigma$ significance, a dipole approximately aligned with the CMB dipole, while its monopole component, which ca
In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of