ﻻ يوجد ملخص باللغة العربية
We have shown (Colin et al., 2019) that the acceleration of the Hubble expansion rate inferred from Type Ia supernovae (SNe Ia) is, at $3.9sigma$ significance, a dipole approximately aligned with the CMB dipole, while its monopole component, which can be interpreted as due to a Cosmological Constant or dark energy, is consistent with zero at $1.4sigma$. This has been challenged by Rubin & Heitlauf (2019) who assert that the dipole arises because we made an incorrect assumption about the SNe Ia light-curve parameters (viz. took them to be sample- and redshift independent), and did not allow for the motion of the Solar system (w.r.t. the CMB frame in which the CMB dipole supposedly vanishes). In fact what has an even larger impact on our finding is that we reversed the inconsistent corrections made for the peculiar velocities of the SNe Ia host galaxies w.r.t the CMB frame, which in fact serve to bias the lever arm of the Hubble diagram towards higher inferred values of the monopole. We demonstrate that even if all such corrections are made consistently and both sample- and redshift-dependence is allowed for in the standardisation of supernova light curves, the evidence for isotropic acceleration rises to just $2.8,sigma$. Thus the criticism of Rubin & Heitlauf serves only to highlight that corrections must be made to the SNe Ia data assuming the standard $Lambda$CDM model, in order to recover it from the data.
It is commonly assumed that the energy density of the Universe was dominated by radiation between reheating after inflation and the onset of matter domination 54,000 years later. While the abundance of light elements indicates that the Universe was r
In the late 1990s, observations of 93 Type Ia supernovae were analysed in the framework of the FLRW cosmology assuming these to be `standard(isable) candles. It was thus inferred that the Hubble expansion rate is accelerating as if driven by a positi
The standard model of cosmology is based on the existence of homogeneous surfaces as the background arena for structure formation. Homogeneity underpins both general relativistic and modified gravity models and is central to the way in which we inter
The discovery ten years ago that the expansion of the Universe is accelerating put in place the last major building block of the present cosmological model, in which the Universe is composed of 4% baryons, 20% dark matter, and 76% dark energy. At the
Marginal likelihoods for the cosmic expansion rates are evaluated using the `Constitution data of 397 supernovas, thereby updating the results in some previous works. Even when beginning with a very strong prior probability that favors an accelerated