ترغب بنشر مسار تعليمي؟ اضغط هنا

Flow-Based Network Creation Games

107   0   0.0 ( 0 )
 نشر من قبل Anna Melnichenko
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Network Creation Games(NCGs) model the creation of decentralized communication networks like the Internet. In such games strategic agents corresponding to network nodes selfishly decide with whom to connect to optimize some objective function. Past research intensively analyzed models where the agents strive for a central position in the network. This models agents optimizing the network for low-latency applications like VoIP. However, with todays abundance of streaming services it is important to ensure that the created network can satisfy the increased bandwidth demand. To the best of our knowledge, this natural problem of the decentralized strategic creation of networks with sufficient bandwidth has not yet been studied. We introduce Flow-Based NCGs where the selfish agents focus on bandwidth instead of latency. In essence, budget-constrained agents create network links to maximize their minimum or average network flow value to all other network nodes. Equivalently, this can also be understood as agents who create links to increase their connectivity and thus also the robustness of the network. For this novel type of NCG we prove that pure Nash equilibria exist, we give a simple algorithm for computing optimal networks, we show that the Price of Stability is 1 and we prove an (almost) tight bound of 2 on the Price of Anarchy. Last but not least, we show that our models do not admit a potential function.



قيم البحث

اقرأ أيضاً

We study strong equilibria in network creation games. These form a classical and well-studied class of games where a set of players form a network by buying edges to their neighbors at a cost of a fixed parameter $alpha$. The cost of a player is defi ned to be the cost of the bought edges plus the sum of distances to all the players in the resulting graph. We identify and characterize various structural properties of strong equilibria, which lead to a characterization of the set of strong equilibria for all $alpha$ in the range $(0,2)$. For $alpha > 2$, Andelman et al. (2009) prove that a star graph in which every leaf buys one edge to the center node is a strong equilibrium, and conjecture that in fact any star is a strong equilibrium. We resolve this conjecture in the affirmative. Additionally, we show that when $alpha$ is large enough ($geq 2n$) there exist non-star trees that are strong equilibria. For the strong price of anarchy, we provide precise expressions when $alpha$ is in the range $(0,2)$, and we prove a lower bound of $3/2$ when $alpha geq 2$. Lastly, we aim to characterize under which conditions (coalitional) improvement dynamics may converge to a strong equilibrium. To this end, we study the (coalitional) finite improvement property and (coalitional) weak acyclicity property. We prove various conditions under which these properties do and do not hold. Some of these results also hold for the class of pure Nash equilibria.
Payment networks were introduced to address the limitation on the transaction throughput of popular blockchains. To open a payment channel one has to publish a transaction on-chain and pay the appropriate transaction fee. A transaction can be routed in the network, as long as there is a path of channels with the necessary capital. The intermediate nodes on this path can ask for a fee to forward the transaction. Hence, opening channels, although costly, can benefit a party, both by reducing the cost of the party for sending a transaction and by collecting the fees from forwarding transactions of other parties. This trade-off spawns a network creation game between the channel parties. In this work, we introduce the first game theoretic model for analyzing the network creation game on blockchain payment channels. Further, we examine various network structures (path, star, complete bipartite graph and clique) and determine for each one of them the constraints (fee value) under which they constitute a Nash equilibrium, given a fixed fee policy. Last, we show that the star is a Nash equilibrium when each channel party can freely decide the channel fee. On the other hand, we prove the complete bipartite graph can never be a Nash equilibrium, given a free fee policy.
One of the natural objectives of the field of the social networks is to predict agents behaviour. To better understand the spread of various products through a social network arXiv:1105.2434 introduced a threshold model, in which the nodes influenced by their neighbours can adopt one out of several alternatives. To analyze the consequences of such product adoption we associate here with each such social network a natural strategic game between the agents. In these games the payoff of each player weakly increases when more players choose his strategy, which is exactly opposite to the congestion games. The possibility of not choosing any product results in two special types of (pure) Nash equilibria. We show that such games may have no Nash equilibrium and that determining an existence of a Nash equilibrium, also of a special type, is NP-complete. This implies the same result for a more general class of games, namely polymatrix games. The situation changes when the underlying graph of the social network is a DAG, a simple cycle, or, more generally, has no source nodes. For these three classes we determine the complexity of an existence of (a special type of) Nash equilibria. We also clarify for these categories of games the status and the complexity of the finite best response property (FBRP) and the finite improvement property (FIP). Further, we introduce a new property of the uniform FIP which is satisfied when the underlying graph is a simple cycle, but determining it is co-NP-hard in the general case and also when the underlying graph has no source nodes. The latter complexity results also hold for the property of being a weakly acyclic game. A preliminary version of this paper appeared as [19].
Congestion games are a classical type of games studied in game theory, in which n players choose a resource, and their individual cost increases with the number of other players choosing the same resource. In network congestion games (NCGs), the reso urces correspond to simple paths in a graph, e.g. representing routing options from a source to a target. In this paper, we introduce a variant of NCGs, referred to as dynamic NCGs: in this setting, players take transitions synchronously, they select their next transitions dynamically, and they are charged a cost that depends on the number of players simultaneously using the same transition. We study, from a complexity perspective, standard concepts of game theory in dynamic NCGs: social optima, Nash equilibria, and subgame perfect equilibria. Our contributions are the following: the existence of a strategy profile with social cost bounded by a constant is in PSPACE and NP-hard. (Pure) Nash equilibria always exist in dynamic NCGs; the existence of a Nash equilibrium with bounded cost can be decided in EXPSPACE, and computing a witnessing strategy profile can be done in doubly-exponential time. The existence of a subgame perfect equilibrium with bounded cost can be decided in 2EXPSPACE, and a witnessing strategy profile can be computed in triply-exponential time.
Network games are widely used as a model for selfish resource-allocation problems. In the classical model, each player selects a path connecting her source and target vertices. The cost of traversing an edge depends on the {em load}; namely, number o f players that traverse it. Thus, it abstracts the fact that different users may use a resource at different times and for different durations, which plays an important role in determining the costs of the users in reality. For example, when transmitting packets in a communication network, routing traffic in a road network, or processing a task in a production system, actual sharing and congestion of resources crucially depends on time. In cite{AGK17}, we introduced {em timed network games}, which add a time component to network games. Each vertex $v$ in the network is associated with a cost function, mapping the load on $v$ to the price that a player pays for staying in $v$ for one time unit with this load. Each edge in the network is guarded by the time intervals in which it can be traversed, which forces the players to spend time in the vertices. In this work we significantly extend the way time can be referred to in timed network games. In the model we study, the network is equipped with {em clocks}, and, as in timed automata, edges are guarded by constraints on the values of the clocks, and their traversal may involve a reset of some clocks. We argue that the stronger model captures many realistic networks. The addition of clocks breaks the techniques we developed in cite{AGK17} and we develop new techniques in order to show that positive results on classic network games carry over to the stronger timed setting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا