ﻻ يوجد ملخص باللغة العربية
We present SPSG, a novel approach to generate high-quality, colored 3D models of scenes from RGB-D scan observations by learning to infer unobserved scene geometry and color in a self-supervised fashion. Our self-supervised approach learns to jointly inpaint geometry and color by correlating an incomplete RGB-D scan with a more complete version of that scan. Notably, rather than relying on 3D reconstruction losses to inform our 3D geometry and color reconstruction, we propose adversarial and perceptual losses operating on 2D renderings in order to achieve high-resolution, high-quality colored reconstructions of scenes. This exploits the high-resolution, self-consistent signal from individual raw RGB-D frames, in contrast to fused 3D reconstructions of the frames which exhibit inconsistencies from view-dependent effects, such as color balancing or pose inconsistencies. Thus, by informing our 3D scene generation directly through 2D signal, we produce high-quality colored reconstructions of 3D scenes, outperforming state of the art on both synthetic and real data.
Realistic color texture generation is an important step in RGB-D surface reconstruction, but remains challenging in practice due to inaccuracies in reconstructed geometry, misaligned camera poses, and view-dependent imaging artifacts. In this work,
Estimating the relative rigid pose between two RGB-D scans of the same underlying environment is a fundamental problem in computer vision, robotics, and computer graphics. Most existing approaches allow only limited maximum relative pose changes sinc
Synthetic data is emerging as a promising solution to the scalability issue of supervised deep learning, especially when real data are difficult to acquire or hard to annotate. Synthetic data generation, however, can itself be prohibitively expensive
During 3D reconstruction, it is often the case that people cannot scan each individual object from all views, resulting in missing geometry in the captured scan. This missing geometry can be fundamentally limiting for many applications, e.g., a robot
Existing CNNs-Based RGB-D Salient Object Detection (SOD) networks are all required to be pre-trained on the ImageNet to learn the hierarchy features which can help to provide a good initialization. However, the collection and annotation of large-scal