ﻻ يوجد ملخص باللغة العربية
We present a reanalysis of several years of DIMM data at the site of Dome C, Antarctica, to provide measurements of the coherence time $tau_0$. Statistics and seasonal behaviour of $tau_0$ are given at two heights above the ground, 3m and 8m, for the wavelength $lambda=500$nm. We found an annual median value of $2.9$ms at the height of 8m. A few measurements could also be obtained at the height of 20m and give a median value of 6ms during the period June--September. For the first time, we provide measurements of $tau_0$ in daytime during the summer, which appears to show the same time dependence as the seeing with a sharp maximum at 5pm local time. Exceptional values of $tau_0$ above 10ms are met at this particular moment. The continuous slow variations of turbulence conditions during the day offers a natural test bed for a solar adaptive optics system.
This paper analyses 3.5 years of site testing data obtained at Dome C, Antarctica, based on measurements obtained with three DIMMs located at three different elevations. Basic statistics of the seeing and the isoplanatic angle are given, as well as t
We present long term site testing statistics obtained at Dome C, Antarctica with various experiments deployed within the Astroconcordia programme since 2003. We give values of integrated turbulence parameters in the visible at ground level and above
In two recent papers the mesoscale model Meso-NH, joint with the Astro-Meso-NH package, has been validated at Dome C, Antarctica, for the characterization of the optical turbulence. It has been shown that the meteorological parameters (temperature an
ASTEP South is an Antarctic Search for Transiting Exo- Planets in the South pole field, from the Concordia station, Dome C, Antarctica. The instrument consists of a thermalized 10 cm refractor observing a fixed 3.88degree x 3.88degree field of view t
To evaluate site quality and to develop multi-conjugative adaptive optics systems for future large solar telescopes, characterization of contributions to seeing from heights up to at least 12 km above the telescope is needed. We describe a method for