ﻻ يوجد ملخص باللغة العربية
We present comprehensive electron spin resonance (ESR) studies of in-plane oriented single crystals of $alpha$-RuCl$_3$, a quasi-two-dimensional material with honeycomb structure, focusing on its high-field spin dynamics. The measurements were performed in magnetic fields up to 16 T, applied along the [110] and [100] directions. Several ESR modes were detected. Combining our findings with recent inelastic neutron- and Raman-scattering data, we identify most of the observed excitations. Most importantly, we show that the low-temperature ESR response beyond the boundary of the magnetically ordered region is dominated by single- and two-particle processes with magnons as elementary excitations. The peculiarities of the excitation spectrum in the vicinity of the critical field are discussed.
We report on THz, infrared reflectivity and transmission experiments for wave numbers from 10 to 8000 cm$^{-1}$ ($sim$ 1 meV - 1 eV) and for temperatures from 5 to 295 K on the Kitaev candidate material {alpha}-RuCl$_3$. As reported earlier, the comp
The frustrated magnet $alpha$-RuCl$_3$ constitutes a fascinating quantum material platform that harbors the intriguing Kitaev physics. However, a consensus on its intricate spin interactions and field-induced quantum phases has not been reached yet.
The combination of electronic correlation and spin-orbit coupling is thought to precipitate a variety of highly unusual electronic phases in solids, including topological and quantum spin liquid states. We report a Raman scattering study that provide
The Kitaev quantum spin liquid (KSL) is a theoretically predicted state of matter whose fractionalized quasiparticles are distinct from bosonic magnons, the fundamental excitation in ordered magnets. The layered honeycomb antiferromagnet $alpha$-RuCl
Measurements of the magnetic Gruneisen parameter ($Gamma_B$) and specific heat on the Kitaev material candidate $alpha$-RuCl$_3$ are used to access in-plane field- and temperature-dependence of the entropy up to 12 T and down to 1 K. No signatures co