ﻻ يوجد ملخص باللغة العربية
Measurements of the magnetic Gruneisen parameter ($Gamma_B$) and specific heat on the Kitaev material candidate $alpha$-RuCl$_3$ are used to access in-plane field- and temperature-dependence of the entropy up to 12 T and down to 1 K. No signatures corresponding to phase transitions are detected beyond the boundary of the magnetically ordered region, but only a shoulder-like anomaly in $Gamma_B$, involving an entropy increment as small as $10^{-5} Rlog 2$. These observations put into question the presence of a thermodynamic phase transition between the purported quantum spin liquid and the field-polarized state of $alpha$-RuCl$_3$. We show theoretically that at low temperatures $Gamma_B$ is sensitive to crossings in the lowest excitations within gapped phases, and identify the measured shoulder-like anomaly as being of such origin. Exact diagonalization calculations demonstrate that the shoulder-like anomaly can be reproduced in extended Kitaev models that gain proximity to an additional phase at finite field without entering it. We discuss manifestations of this proximity in other measurements.
Thermodynamics of the Kitaev honeycomb magnet $alpha$-RuCl$_3$ is studied for different directions of in-plane magnetic field using measurements of the magnetic Gruneisen parameter $Gamma_B$ and specific heat $C$. We identify two critical fields $B_c
$alpha$-RuCl$_3$ has attracted enormous attention since it has been proposed as a prime candidate to study fractionalized magnetic excitations akin to Kitaevs honeycomb-lattice spin liquid. We have performed a detailed specific-heat investigation at
An external magnetic field can induce a transition in $alpha$-RuCl$_3$ from an ordered zigzag state to a disordered state that is possibly related to the Kitaev quantum spin liquid. Here we present new field dependent inelastic neutron scattering and
The frustrated magnet $alpha$-RuCl$_3$ constitutes a fascinating quantum material platform that harbors the intriguing Kitaev physics. However, a consensus on its intricate spin interactions and field-induced quantum phases has not been reached yet.
We report a $^{35}$Cl nuclear magnetic resonance study in the honeycomb lattice, $alpha$-RuCl$_3$, a material that has been suggested to potentially realize a Kitaev quantum spin liquid (QSL) ground state. Our results provide direct evidence that $al