ﻻ يوجد ملخص باللغة العربية
Future surveys focusing on understanding the nature of dark energy (e.g., Euclid and WFIRST) will cover large fractions of the extragalactic sky in near-IR slitless spectroscopy. These surveys will detect a large number of galaxies that will have only one emission line in the covered spectral range. In order to maximize the scientific return of these missions, it is imperative that single emission lines are correctly identified. Using a supervised machine-learning approach, we classified a sample of single emission lines extracted from the WFC3 IR Spectroscopic Parallel survey (WISP), one of the closest existing analogs to future slitless surveys. Our automatic software integrates a SED fitting strategy with additional independent sources of information. We calibrated it and tested it on a gold sample of securely identified objects with multiple lines detected. The algorithm correctly classifies real emission lines with an accuracy of 82.6%, whereas the accuracy of the SED fitting technique alone is low (~50%) due to the limited amount of photometric data available (<=6 bands). While not specifically designed for the Euclid and WFIRST surveys, the algorithm represents an important precursor of similar algorithms to be used in these future missions.
We present the results of a proof-of-concept experiment which demonstrates that deep learning can successfully be used for production-scale classification of compact star clusters detected in HST UV-optical imaging of nearby spiral galaxies (D < 20 M
Joint survey processing (JSP) is the pixel level combination of LSST, Euclid, and WFIRST datasets. By combining the high spatial resolution of the space-based datasets with deep, seeing-limited, ground-based images in the optical bands, systematics l
We present a machine learning (ML) pipeline to identify star clusters in the multi{color images of nearby galaxies, from observations obtained with the Hubble Space Telescope as part of the Treasury Project LEGUS (Legacy ExtraGalactic Ultraviolet Sur
This paper presents a method to identify substructures in NMR spectra of mixtures, specifically 2D spectra, using a bespoke image-based Convolutional Neural Network application. This is done using HSQC and HMBC spectra separately and in combination.
Identification of charged particles in a multilayer detector by the energy loss technique may also be achieved by the use of a neural network. The performance of the network becomes worse when a large fraction of information is missing, for instance