ترغب بنشر مسار تعليمي؟ اضغط هنا

Identification of single spectral lines through supervised machine learning in a large HST survey (WISP): a pilot study for Euclid and WFIRST

79   0   0.0 ( 0 )
 نشر من قبل Ivano Baronchelli
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Future surveys focusing on understanding the nature of dark energy (e.g., Euclid and WFIRST) will cover large fractions of the extragalactic sky in near-IR slitless spectroscopy. These surveys will detect a large number of galaxies that will have only one emission line in the covered spectral range. In order to maximize the scientific return of these missions, it is imperative that single emission lines are correctly identified. Using a supervised machine-learning approach, we classified a sample of single emission lines extracted from the WFC3 IR Spectroscopic Parallel survey (WISP), one of the closest existing analogs to future slitless surveys. Our automatic software integrates a SED fitting strategy with additional independent sources of information. We calibrated it and tested it on a gold sample of securely identified objects with multiple lines detected. The algorithm correctly classifies real emission lines with an accuracy of 82.6%, whereas the accuracy of the SED fitting technique alone is low (~50%) due to the limited amount of photometric data available (<=6 bands). While not specifically designed for the Euclid and WFIRST surveys, the algorithm represents an important precursor of similar algorithms to be used in these future missions.



قيم البحث

اقرأ أيضاً

We present the results of a proof-of-concept experiment which demonstrates that deep learning can successfully be used for production-scale classification of compact star clusters detected in HST UV-optical imaging of nearby spiral galaxies (D < 20 M pc) in the PHANGS-HST survey. Given the relatively small nature of existing, human-labelled star cluster samples, we transfer the knowledge of state-of-the-art neural network models for real-object recognition to classify star clusters candidates into four morphological classes. We perform a series of experiments to determine the dependence of classification performance on: neural network architecture (ResNet18 and VGG19-BN); training data sets curated by either a single expert or three astronomers; and the size of the images used for training. We find that the overall classification accuracies are not significantly affected by these choices. The networks are used to classify star cluster candidates in the PHANGS-HST galaxy NGC 1559, which was not included in the training samples. The resulting prediction accuracies are 70%, 40%, 40-50%, 50-70% for class 1, 2, 3 star clusters, and class 4 non-clusters respectively. This performance is competitive with consistency achieved in previously published human and automated quantitative classification of star cluster candidate samples (70-80%, 40-50%, 40-50%, and 60-70%). The methods introduced herein lay the foundations to automate classification for star clusters at scale, and exhibit the need to prepare a standardized dataset of human-labelled star cluster classifications, agreed upon by a full range of experts in the field, to further improve the performance of the networks introduced in this study.
80 - R. Chary , G. Brammer , P. Capak 2019
Joint survey processing (JSP) is the pixel level combination of LSST, Euclid, and WFIRST datasets. By combining the high spatial resolution of the space-based datasets with deep, seeing-limited, ground-based images in the optical bands, systematics l ike source confusion and astrometric mismatch can be addressed to derive the highest precision optical/infrared photometric catalogs. This white paper highlights the scientific motivation, computational and algorithmic needs to build joint pixel level processing capabilities, which the individual projects by themselves will not be able to support. Through this white paper, we request that the Astro2020 decadal committee recognize the JSP effort as a multi-agency project with the natural outcome being a collaborative effort among groups which are normally supported by a single agency. JSP will allow the U.S. (and international) astronomical community to manipulate the flagship data sets and undertake innovative science investigations ranging from solar system object characterization, exoplanet detections, nearby galaxy rotation rates and dark matter properties, to epoch of reionization studies. It will also result in the ultimate constraints on cosmological parameters and the nature of dark energy, with far smaller uncertainties and a better handle on systematics than by any one survey alone.
We present a machine learning (ML) pipeline to identify star clusters in the multi{color images of nearby galaxies, from observations obtained with the Hubble Space Telescope as part of the Treasury Project LEGUS (Legacy ExtraGalactic Ultraviolet Sur vey). StarcNet (STAR Cluster classification NETwork) is a multi-scale convolutional neural network (CNN) which achieves an accuracy of 68.6% (4 classes)/86.0% (2 classes: cluster/non-cluster) for star cluster classification in the images of the LEGUS galaxies, nearly matching human expert performance. We test the performance of StarcNet by applying pre-trained CNN model to galaxies not included in the training set, finding accuracies similar to the reference one. We test the effect of StarcNet predictions on the inferred cluster properties by comparing multi-color luminosity functions and mass-age plots from catalogs produced by StarcNet and by human-labeling; distributions in luminosity, color, and physical characteristics of star clusters are similar for the human and ML classified samples. There are two advantages to the ML approach: (1) reproducibility of the classifications: the ML algorithms biases are fixed and can be measured for subsequent analysis; and (2) speed of classification: the algorithm requires minutes for tasks that humans require weeks to months to perform. By achieving comparable accuracy to human classifiers, StarcNet will enable extending classifications to a larger number of candidate samples than currently available, thus increasing significantly the statistics for cluster studies.
This paper presents a method to identify substructures in NMR spectra of mixtures, specifically 2D spectra, using a bespoke image-based Convolutional Neural Network application. This is done using HSQC and HMBC spectra separately and in combination. The application can reliably detect substructures in pure compounds, using a simple network. It can work for mixtures when trained on pure compounds only. HMBC data and the combination of HMBC and HSQC show better results than HSQC alone.
58 - S. Riggi , D. Riggi , F. Riggi 2020
Identification of charged particles in a multilayer detector by the energy loss technique may also be achieved by the use of a neural network. The performance of the network becomes worse when a large fraction of information is missing, for instance due to detector inefficiencies. Algorithms which provide a way to impute missing information have been developed over the past years. Among the various approaches, we focused on normal mixtures models in comparison with standard mean imputation and multiple imputation methods. Further, to account for the intrinsic asymmetry of the energy loss data, we considered skew-normal mixture models and provided a closed form implementation in the Expectation-Maximization (EM) algorithm framework to handle missing patterns. The method has been applied to a test case where the energy losses of pions, kaons and protons in a six-layers Silicon detector are considered as input neurons to a neural network. Results are given in terms of reconstruction efficiency and purity of the various species in different momentum bins.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا