ﻻ يوجد ملخص باللغة العربية
We present the results of a proof-of-concept experiment which demonstrates that deep learning can successfully be used for production-scale classification of compact star clusters detected in HST UV-optical imaging of nearby spiral galaxies (D < 20 Mpc) in the PHANGS-HST survey. Given the relatively small nature of existing, human-labelled star cluster samples, we transfer the knowledge of state-of-the-art neural network models for real-object recognition to classify star clusters candidates into four morphological classes. We perform a series of experiments to determine the dependence of classification performance on: neural network architecture (ResNet18 and VGG19-BN); training data sets curated by either a single expert or three astronomers; and the size of the images used for training. We find that the overall classification accuracies are not significantly affected by these choices. The networks are used to classify star cluster candidates in the PHANGS-HST galaxy NGC 1559, which was not included in the training samples. The resulting prediction accuracies are 70%, 40%, 40-50%, 50-70% for class 1, 2, 3 star clusters, and class 4 non-clusters respectively. This performance is competitive with consistency achieved in previously published human and automated quantitative classification of star cluster candidate samples (70-80%, 40-50%, 40-50%, and 60-70%). The methods introduced herein lay the foundations to automate classification for star clusters at scale, and exhibit the need to prepare a standardized dataset of human-labelled star cluster classifications, agreed upon by a full range of experts in the field, to further improve the performance of the networks introduced in this study.
When completed, the PHANGS-HST project will provide a census of roughly 50,000 compact star clusters and associations, as well as human morphological classifications for roughly 20,000 of those objects. These large numbers motivated the development o
The sensitivity and angular resolution of photometric surveys executed by the Hubble Space Telescope (HST) enable studies of individual star clusters in galaxies out to a few tens of megaparsecs. The fitting of spectral energy distributions (SEDs) of
We present an innovative and widely applicable approach for the detection and classification of stellar clusters, developed for the PHANGS-HST Treasury Program, an $NUV$-to-$I$ band imaging campaign of 38 spiral galaxies. Our pipeline first generates
Future surveys focusing on understanding the nature of dark energy (e.g., Euclid and WFIRST) will cover large fractions of the extragalactic sky in near-IR slitless spectroscopy. These surveys will detect a large number of galaxies that will have onl
We present a machine learning (ML) pipeline to identify star clusters in the multi{color images of nearby galaxies, from observations obtained with the Hubble Space Telescope as part of the Treasury Project LEGUS (Legacy ExtraGalactic Ultraviolet Sur