ﻻ يوجد ملخص باللغة العربية
Pseudo-LiDAR point cloud interpolation is a novel and challenging task in the field of autonomous driving, which aims to address the frequency mismatching problem between camera and LiDAR. Previous works represent the 3D spatial motion relationship induced by a coarse 2D optical flow, and the quality of interpolated point clouds only depends on the supervision of depth maps. As a result, the generated point clouds suffer from inferior global distributions and local appearances. To solve the above problems, we propose a Pseudo-LiDAR point cloud interpolation network to generates temporally and spatially high-quality point cloud sequences. By exploiting the scene flow between point clouds, the proposed network is able to learn a more accurate representation of the 3D spatial motion relationship. For the more comprehensive perception of the distribution of point cloud, we design a novel reconstruction loss function that implements the chamfer distance to supervise the generation of Pseudo-LiDAR point clouds in 3D space. In addition, we introduce a multi-modal deep aggregation module to facilitate the efficient fusion of texture and depth features. As the benefits of the improved motion representation, training loss function, and model structure, our approach gains significant improvements on the Pseudo-LiDAR point cloud interpolation task. The experimental results evaluated on KITTI dataset demonstrate the state-of-the-art performance of the proposed network, quantitatively and qualitatively.
The recently proposed pseudo-LiDAR based 3D detectors greatly improve the benchmark of monocular/stereo 3D detection task. However, the underlying mechanism remains obscure to the research community. In this paper, we perform an in-depth investigatio
Projecting the point cloud on the 2D spherical range image transforms the LiDAR semantic segmentation to a 2D segmentation task on the range image. However, the LiDAR range image is still naturally different from the regular 2D RGB image; for example
Monocular 3D detection currently struggles with extremely lower detection rates compared to LiDAR-based methods. The poor accuracy is mainly caused by the absence of accurate location cues due to the ill-posed nature of monocular imagery. LiDAR point
In this preliminary work we attempt to apply submanifold sparse convolution to the task of 3D person detection. In particular, we present Person-MinkUNet, a single-stage 3D person detection network based on Minkowski Engine with U-Net architecture. T
It is laborious to manually label point cloud data for training high-quality 3D object detectors. This work proposes a weakly supervised approach for 3D object detection, only requiring a small set of weakly annotated scenes, associated with a few pr