ﻻ يوجد ملخص باللغة العربية
We study a paradigmatic model in field theory where a global $U(1)$ and scale symmetries are jointly and spontaneously broken. At zero density the model has a non-compact flat direction, which at finite density needs to be slightly lifted. The resulting low-energy spectrum is composed by a standard gapless $U(1)$ Nambu-Goldstone mode and a light dilaton whose gap is determined by the chemical potential and corrected by the couplings. Even though $U(1)$ and scale symmetries commute, there is a mixing between the $U(1)$ Nambu-Goldstone and the dilaton that is crucial to recover the expected dynamics of a conformal fluid and leads to a phonon propagating at the speed of sound. The results rely solely on an accurate study of the Ward-Takahashi identities and are checked against standard fluctuation computations. We extend our results to a boosted superfluid, and comment the relevance of our findings to condensed matter applications.
We show that the multicomponent meson systems can be described by chiral perturbation theory. We chiefly focus on a system of two pion gases at different isospin chemical potential, deriving the general expression of the chiral Lagrangian, the ground
At finite density, the spontaneous breakdown of an internal non-Abelian symmetry dictates, along with gapless modes, modes whose gap is fixed by the algebra and proportional to the chemical potential: the gapped Goldstones. Generically the gap of the
Developing on a recent work on localized bubbles of ordinary relativistic fluids, we study the comparatively richer leading order surface physics of relativistic superfluids, coupled to an arbitrary stationary background metric and gauge field in $3+
We compute the orbital angular momentum $L_z$ of an s-wave paired superfluid in the presence of an axisymmetric multiply quantized vortex. For vortices with winding number $|k| > 1$, we find that in the weak-pairing BCS regime $L_z$ is significantly
The presence of flat bands is a source of localization in lattice systems. While flat bands are often unstable with respect to interactions between the particles, they can persist in certain cases. We consider a diamond ladder with transverse hopping