ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiply quantized vortices in fermionic superfluids: angular momentum, unpaired fermions, and spectral asymmetry

83   0   0.0 ( 0 )
 نشر من قبل Abhinav Prem
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute the orbital angular momentum $L_z$ of an s-wave paired superfluid in the presence of an axisymmetric multiply quantized vortex. For vortices with winding number $|k| > 1$, we find that in the weak-pairing BCS regime $L_z$ is significantly reduced from its value $hbar N k/2$ in the Bose-Einstein condensation (BEC) regime, where $N$ is the total number of fermions. This deviation results from the presence of unpaired fermions in the BCS ground state, which arise as a consequence of spectral flow along the vortex sub-gap states. We support our results analytically and numerically by solving the Bogoliubov-de-Gennes equations within the weak-pairing BCS regime.



قيم البحث

اقرأ أيضاً

We present resistivity and thermal-conductivity measurements of superconducting FeSe in intense magnetic fields up to 35 T applied parallel to the $ab$ plane. At low temperatures, the upper critical field $mu_0 H_{c2}^{ab}$ shows an anomalous upturn, while thermal conductivity exhibits a discontinuous jump at $mu_0 H^{ast}approx 24$ T well below $mu_0 H_{c2}^{ab}$, indicating a first-order phase transition in the superconducting state. This demonstrates the emergence of a distinct field-induced superconducting phase. Moreover, the broad resistive transition at high temperatures abruptly becomes sharp upon entering the high-field phase, indicating a dramatic change of the magnetic-flux properties. We attribute the high-field phase to the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state, where the formation of planar nodes gives rise to a segmentation of the flux-line lattice. We point out that strongly orbital-dependent pairing as well as spin-orbit interactions, the multiband nature, and the extremely small Fermi energy are important for the formation of the FFLO state in FeSe.
The core structure of multiply quantized vortices is theoretically investigated in fermionic superfluid near Feshbach resonance. Under population imbalance in two hyperfine spin states, the vortex core is filled in by the ``paramagnetic moment. Here, we find the spatial oscillation of the magnetization inside the core sensitively due to the topological structure of the pairing field, in the range from the weak coupling regime to the unitary limit. This magnetization inside the giant core reveals the winding number of the vortex and directly results from the low-lying quasiparticle states bound inside the core. It is therefore proposed that the density profile experiment using phase contrast imaging can provide the spectroscopy of novel core level structures in giant vortices. To help the understanding on these outcomes, we also derive the analytic solution for the low-lying quasiparticle states inside the core of a multiply quantized vortex.
We study non-equilibrium polariton superfluids in the optical parametric oscillator (OPO) regime using a two-component Gross-Pitaevskii equation with pumping and decay. We identify a regime above OPO threshold, where the system undergoes spontaneous symmetry breaking and is unstable towards vortex formation without any driving rotation. Stable vortex solutions differ from metastable ones; the latter can persist in OPO superfluids but can only be triggered externally. Both spontaneous and triggered vortices are characterised by a generalised healing length, specified by the OPO parameters only.
We study a paradigmatic model in field theory where a global $U(1)$ and scale symmetries are jointly and spontaneously broken. At zero density the model has a non-compact flat direction, which at finite density needs to be slightly lifted. The result ing low-energy spectrum is composed by a standard gapless $U(1)$ Nambu-Goldstone mode and a light dilaton whose gap is determined by the chemical potential and corrected by the couplings. Even though $U(1)$ and scale symmetries commute, there is a mixing between the $U(1)$ Nambu-Goldstone and the dilaton that is crucial to recover the expected dynamics of a conformal fluid and leads to a phonon propagating at the speed of sound. The results rely solely on an accurate study of the Ward-Takahashi identities and are checked against standard fluctuation computations. We extend our results to a boosted superfluid, and comment the relevance of our findings to condensed matter applications.
We show that the multicomponent meson systems can be described by chiral perturbation theory. We chiefly focus on a system of two pion gases at different isospin chemical potential, deriving the general expression of the chiral Lagrangian, the ground state properties and the spectrum of the low-energy excitations. We consider two different kinds of interactions between the two meson gases: one which does not lock the two chiral symmetry groups and one which does lock them. The former is a kind of interaction that has already been discussed in mutlicomponent superfluids. The latter is perhaps more interesting, because seems to be related to an instability. Although the pressure of the system does not show any instability, we find that for sufficiently strong locking, the spectrum of one Bogolyubov mode becomes tachyonic. This unstable branch seems to indicate a transition to an inhomogeneous phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا