ﻻ يوجد ملخص باللغة العربية
We present a new shear calibration method based on machine learning. The method estimates the individual shear responses of the objects from the combination of several measured properties on the images using supervised learning. The supervised learning uses the true individual shear responses obtained from copies of the image simulations with different shear values. On simulated GREAT3data, we obtain a residual bias after the calibration compatible with 0 and beyond Euclid requirements for a signal-to-noise ratio > 20 within ~15 CPU hours of training using only ~10^5 objects. This efficient machine-learning approach can use a smaller data set because the method avoids the contribution from shape noise. The low dimensionality of the input data also leads to simple neural network architectures. We compare it to the recently described method Metacalibration, which shows similar performances. The different methods and systematics suggest that the two methods are very good complementary methods. Our method can therefore be applied without much effort to any survey such as Euclid or the Vera C. Rubin Observatory, with fewer than a million images to simulate to learn the calibration function.
Sample selection is a necessary preparation for weak lensing measurement. It is well-known that selection itself may introduce bias in the measured shear signal. Using image simulation and the Fourier_Quad shear measurement pipeline, we quantify the
Accurate shape measurements are essential to infer cosmological parameters from large area weak gravitational lensing studies. The compact diffraction-limited point-spread function (PSF) in space-based observations is greatly beneficial, but its chro
With the advent of large-scale weak lensing surveys there is a need to understand how realistic, scale-dependent systematics bias cosmic shear and dark energy measurements, and how they can be removed. Here we describe how spatial variations in the a
Forthcoming large-scale surveys will soon attempt to measure cosmic shear to an unprecedented level of accuracy, requiring a similarly high level of accuracy in the shear measurements of galaxies. Factors such as pixelisation, imperfect point-spread
We present results from a set of simulations designed to constrain the weak lensing shear calibration for the Hyper Suprime-Cam (HSC) survey. These simulations include HSC observing conditions and galaxy images from the Hubble Space Telescope (HST),