ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards a Bias-Free Selection Function in Shear Measurement

72   0   0.0 ( 0 )
 نشر من قبل Hekun Li
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Sample selection is a necessary preparation for weak lensing measurement. It is well-known that selection itself may introduce bias in the measured shear signal. Using image simulation and the Fourier_Quad shear measurement pipeline, we quantify the selection bias in various commonly used selection function (signal-to-noise-ratio, magnitude, etc.). We proposed a new selection function defined in the power spectrum of the galaxy image. This new selection function has low selection bias, and it is particularly convenient for shear measurement pipelines based on Fourier transformation.



قيم البحث

اقرأ أيضاً

We present a new shear calibration method based on machine learning. The method estimates the individual shear responses of the objects from the combination of several measured properties on the images using supervised learning. The supervised learni ng uses the true individual shear responses obtained from copies of the image simulations with different shear values. On simulated GREAT3data, we obtain a residual bias after the calibration compatible with 0 and beyond Euclid requirements for a signal-to-noise ratio > 20 within ~15 CPU hours of training using only ~10^5 objects. This efficient machine-learning approach can use a smaller data set because the method avoids the contribution from shape noise. The low dimensionality of the input data also leads to simple neural network architectures. We compare it to the recently described method Metacalibration, which shows similar performances. The different methods and systematics suggest that the two methods are very good complementary methods. Our method can therefore be applied without much effort to any survey such as Euclid or the Vera C. Rubin Observatory, with fewer than a million images to simulate to learn the calibration function.
Accurate shape measurements are essential to infer cosmological parameters from large area weak gravitational lensing studies. The compact diffraction-limited point-spread function (PSF) in space-based observations is greatly beneficial, but its chro maticity for a broad band observation can lead to new subtle effects that could hitherto be ignored: the PSF of a galaxy is no longer uniquely defined and spatial variations in the colours of galaxies result in biases in the inferred lensing signal. Taking Euclid as a reference, we show that this colourgradient bias (CG bias) can be quantified with high accuracy using available multi-colour Hubble Space Telescope (HST) data. In particular we study how noise in the HST observations might impact such measurements and find this to be negligible. We determine the CG bias using HST observations in the F606W and F814W filters and observe a correlation with the colour, in line with expectations, whereas the dependence with redshift is weak. The biases for individual galaxies are generally well below 1%, which may be reduced further using morphological information from the Euclid data. Our results demonstrate that CG bias should not be ignored, but it is possible to determine its amplitude with sufficient precision, so that it will not significantly bias the weak lensing measurements using Euclid data.
With the advent of large-scale weak lensing surveys there is a need to understand how realistic, scale-dependent systematics bias cosmic shear and dark energy measurements, and how they can be removed. Here we describe how spatial variations in the a mplitude and orientation of realistic image distortions convolve with the measured shear field, mixing the even-parity convergence and odd-parity modes, and bias the shear power spectrum. Many of these biases can be removed by calibration to external data, the survey itself, or by modelling in simulations. The uncertainty in the calibration must be marginalised over and we calculate how this propagates into parameter estimation, degrading the dark energy Figure-of-Merit. We find that noise-like biases affect dark energy measurements the most, while spikes in the bias power have the least impact, reflecting their correlation with the effect of cosmological parameters. We argue that in order to remove systematic biases in cosmic shear surveys and maintain statistical power effort should be put into improving the accuracy of the bias calibration rather than minimising the size of the bias. In general, this appears to be a weaker condition for bias removal. We also investigate how to minimise the size of the calibration set for a fixed reduction in the Figure-of-Merit. These results can be used to model the effect of biases and calibration on a cosmic shear survey accurately, assess their impact on the measurement of modified gravity and dark energy models, and to optimise surveys and calibration requirements.
We present a study of the dependencies of shear bias on simulation (input) and measured (output) parameters, noise, point-spread function anisotropy, pixel size, and the model bias coming from two different and independent galaxy shape estimators. We used simulated images from Galsim based on the GREAT3 control-space-constant branch, and we measured shear bias from a model-fitting method (gFIT) and a moment-based method (Kaiser-Squires-Broadhurst). We show the bias dependencies found on input and output parameters for both methods, and we identify the main dependencies and causes. Most of the results are consistent between the two estimators, an interesting result given the differences of the methods. We also find important dependences on orientation and morphology properties such as flux, size, and ellipticity. We show that noise and pixelization play an important role in the bias dependencies on the output properties and galaxy orientation. We show some examples of model bias that produce a bias dependence on the Sersic index n as well as a different shear bias between galaxies consisting of a single Sersic profile and galaxies with a disc and a bulge. We also see an important coupling between several properties on the bias dependences. Because of this, we need to study several measured properties simultaneously in order to properly understand the nature of shear bias. This paper serves as a first step towards a companion paper that describes a machine learning approach to modelling shear bias as a complex function of many observed properties.
In the CDM paradigm, the halo mass function is a sensitive probe of the cosmic structure. In observations, halo mass is typically estimated from its relation with other observables. The resulting halo mass function is subject to systematic bias, such as the Eddington bias, due to the scatter or uncertainty in the observable - mass relation. Exact correction for the bias is not easy, as predictions for the observables are typically model-dependent in simulations. In this paper, we point out an interesting feature in the halo mass function of the concordence $Lambda$CDM model: the total halo mass within each evenly-spaced logarithmic mass bin is approximately the same over a large mass range. We show that this property allows us to construct an almost bias-free halo mass function using only an observable (as a halo mass estimator) and stacked weak lensing measurements as long as the scatter between the true halo mass and the observable-inferred mass has a stable form in logarithmic units. The method is not sensitive to the form of the mass-observable relation. We test the idea using cosmological simulations, and show that the method performs very well for realistic observables.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا