ترغب بنشر مسار تعليمي؟ اضغط هنا

Advertising for Demographically Fair Outcomes

62   0   0.0 ( 0 )
 نشر من قبل Kamesh Munagala
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Online advertising on platforms such as Google or Facebook has become an indispensable outreach tool, including for applications where it is desirable to engage different demographics in an equitable fashion, such as hiring, housing, civic processes, and public health outreach efforts. Somewhat surprisingly, the existing online advertising ecosystem provides very little support for advertising to (and recruiting) a demographically representative cohort. We study the problem of advertising for demographic representativeness from both an empirical and algorithmic perspective. In essence, we seek fairness in the outcome or



قيم البحث

اقرأ أيضاً

Two simple and attractive mechanisms for the fair division of indivisible goods in an online setting are LIKE and BALANCED LIKE. We study some fundamental computational problems concerning the outcomes of these mechanisms. In particular, we consider what expected outcomes are possible, what outcomes are necessary, and how to compute their exact outcomes. In general, we show that such questions are more tractable to compute for LIKE than for BALANCED LIKE. As LIKE is strategy-proof but BALANCED LIKE is not, we also consider the computational problem of how, with BALANCED LIKE, an agent can compute a strategic bid to improve their outcome. We prove that this problem is intractable in general.
When selling information products, the seller can provide some free partial information to change peoples valuations so that the overall revenue can possibly be increased. We study the general problem of advertising information products by revealing partial information. We consider buyers who are decision-makers. The outcomes of the decision problems depend on the state of the world that is unknown to the buyers. The buyers can make their own observations and thus can hold different personal beliefs about the state of the world. There is an information seller who has access to the state of the world. The seller can promote the information by revealing some partial information. We assume that the seller chooses a long-term advertising strategy and then commits to it. The sellers goal is to maximize the expected revenue. We study the problem in two settings. (1) The seller targets buyers of a certain type. In this case, we prove that finding the optimal advertising strategy is equivalent to finding the concave closure of a simple function. The function is a product of two quantities, the likelihood ratio and the cost of uncertainty. Based on this observation, we prove some properties of the optimal mechanism, which allow us to solve for the optimal mechanism by a finite-size convex program. The convex program will have a polynomial size if the state of the world has a constant number of possible realizations or the buyers face a decision problem with a constant number of options. For the general problem, we prove that it is NP-hard to find the optimal mechanism. (2) When the seller faces buyers of different types and only knows the distribution of their types, we provide an approximation algorithm when it is not too hard to predict the possible type of buyers who will make the purchase. For the general problem, we prove that it is NP-hard to find a constant-factor approximation.
A mediator is a well-known construct in game theory, and is an entity that plays on behalf of some of the agents who choose to use its services, while the rest of the agents participate in the game directly. We initiate a game theoretic study of spon sored search auctions, such as those used by Google and Yahoo!, involving {em incentive driven} mediators. We refer to such mediators as {em for-profit} mediators, so as to distinguish them from mediators introduced in prior work, who have no monetary incentives, and are driven by the altruistic goal of implementing certain desired outcomes. We show that in our model, (i) players/advertisers can improve their payoffs by choosing to use the services of the mediator, compared to directly participating in the auction; (ii) the mediator can obtain monetary benefit by managing the advertising burden of its group of advertisers; and (iii) the payoffs of the mediator and the advertisers it plays for are compatible with the incentive constraints from the advertisers who do dot use its services. A simple intuition behind the above result comes from the observation that the mediator has more information about and more control over the bid profile than any individual advertiser, allowing her to reduce the payments made to the auctioneer, while still maintaining incentive constraints. Further, our results indicate that there are significant opportunities for diversification in the internet economy and we should expect it to continue to develop richer structure, with room for different types of agents to coexist.
Standard ad auction formats do not immediately extend to settings where multiple size configurations and layouts are available to advertisers. In these settings, the sale of web advertising space increasingly resembles a combinatorial auction with co mplementarities, where truthful auctions such as the Vickrey-Clarke-Groves (VCG) can yield unacceptably low revenue. We therefore study core selecting auctions, which boost revenue by setting payments so that no group of agents, including the auctioneer, can jointly improve their utilities by switching to a different outcome. Our main result is a combinatorial algorithm that finds an approximate bidder optimal core point with almost linear number of calls to the welfare maximization oracle. Our algorithm is faster than previously-proposed heuristics in the literature and has theoretical guarantees. We conclude that core pricing is implementable even for very time sensitive practical use cases such as realtime auctions for online advertising and can yield more revenue. We justify this claim experimentally using the Microsoft Bing Ad Auction data, through which we show our core pricing algorithm generates almost 26% more revenue than VCG on average, about 9% more revenue than other core pricing rules known in the literature, and almost matches the revenue of the standard Generalized Second Price (GSP) auction.
The real-time bidding (RTB), aka programmatic buying, has recently become the fastest growing area in online advertising. Instead of bulking buying and inventory-centric buying, RTB mimics stock exchanges and utilises computer algorithms to automatic ally buy and sell ads in real-time; It uses per impression context and targets the ads to specific people based on data about them, and hence dramatically increases the effectiveness of display advertising. In this paper, we provide an empirical analysis and measurement of a production ad exchange. Using the data sampled from both demand and supply side, we aim to provide first-hand insights into the emerging new impression selling infrastructure and its bidding behaviours, and help identifying research and design issues in such systems. From our study, we observed that periodic patterns occur in various statistics including impressions, clicks, bids, and conversion rates (both post-view and post-click), which suggest time-dependent models would be appropriate for capturing the repeated patterns in RTB. We also found that despite the claimed second price auction, the first price payment in fact is accounted for 55.4% of total cost due to the arrangement of the soft floor price. As such, we argue that the setting of soft floor price in the current RTB systems puts advertisers in a less favourable position. Furthermore, our analysis on the conversation rates shows that the current bidding strategy is far less optimal, indicating the significant needs for optimisation algorithms incorporating the facts such as the temporal behaviours, the frequency and recency of the ad displays, which have not been well considered in the past.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا