ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast Core Pricing for Rich Advertising Auctions

70   0   0.0 ( 0 )
 نشر من قبل Rad Niazadeh
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Standard ad auction formats do not immediately extend to settings where multiple size configurations and layouts are available to advertisers. In these settings, the sale of web advertising space increasingly resembles a combinatorial auction with complementarities, where truthful auctions such as the Vickrey-Clarke-Groves (VCG) can yield unacceptably low revenue. We therefore study core selecting auctions, which boost revenue by setting payments so that no group of agents, including the auctioneer, can jointly improve their utilities by switching to a different outcome. Our main result is a combinatorial algorithm that finds an approximate bidder optimal core point with almost linear number of calls to the welfare maximization oracle. Our algorithm is faster than previously-proposed heuristics in the literature and has theoretical guarantees. We conclude that core pricing is implementable even for very time sensitive practical use cases such as realtime auctions for online advertising and can yield more revenue. We justify this claim experimentally using the Microsoft Bing Ad Auction data, through which we show our core pricing algorithm generates almost 26% more revenue than VCG on average, about 9% more revenue than other core pricing rules known in the literature, and almost matches the revenue of the standard Generalized Second Price (GSP) auction.



قيم البحث

اقرأ أيضاً

In e-commerce advertising, the ad platform usually relies on auction mechanisms to optimize different performance metrics, such as user experience, advertiser utility, and platform revenue. However, most of the state-of-the-art auction mechanisms onl y focus on optimizing a single performance metric, e.g., either social welfare or revenue, and are not suitable for e-commerce advertising with various, dynamic, difficult to estimate, and even conflicting performance metrics. In this paper, we propose a new mechanism called Deep GSP auction, which leverages deep learning to design new rank score functions within the celebrated GSP auction framework. These new rank score functions are implemented via deep neural network models under the constraints of monotone allocation and smooth transition. The requirement of monotone allocation ensures Deep GSP auction nice game theoretical properties, while the requirement of smooth transition guarantees the advertiser utilities would not fluctuate too much when the auction mechanism switches among candidate mechanisms to achieve different optimization objectives. We deployed the proposed mechanisms in a leading e-commerce ad platform and conducted comprehensive experimental evaluations with both offline simulations and online A/B tests. The results demonstrated the effectiveness of the Deep GSP auction compared to the state-of-the-art auction mechanisms.
Search auctions have become a dominant source of revenue generation on the Internet. Such auctions have typically used per-click bidding and pricing. We propose the use of hybrid auctions where an advertiser can make a per-impression as well as a per -click bid, and the auctioneer then chooses one of the two as the pricing mechanism. We assume that the advertiser and the auctioneer both have separate beliefs (called priors) on the click-probability of an advertisement. We first prove that the hybrid auction is truthful, assuming that the advertisers are risk-neutral. We then show that this auction is superior to the existing per-click auction in multiple ways: 1) It takes into account the risk characteristics of the advertisers. 2) For obscure keywords, the auctioneer is unlikely to have a very sharp prior on the click-probabilities. In such situations, the hybrid auction can result in significantly higher revenue. 3) An advertiser who believes that its click-probability is much higher than the auctioneers estimate can use per-impression bids to correct the auctioneers prior without incurring any extra cost. 4) The hybrid auction can allow the advertiser and auctioneer to implement complex dynamic programming strategies. As Internet commerce matures, we need more sophisticated pricing models to exploit all the information held by each of the participants. We believe that hybrid auctions could be an important step in this direction.
Computational advertising has been studied to design efficient marketing strategies that maximize the number of acquired customers. In an increased competitive market, however, a market leader (a leader) requires the acquisition of new customers as w ell as the retention of her loyal customers because there often exists a competitor (a follower) who tries to attract customers away from the market leader. In this paper, we formalize a new model called the Stackelberg budget allocation game with a bipartite influence model by extending a budget allocation problem over a bipartite graph to a Stackelberg game. To find a strong Stackelberg equilibrium, a standard solution concept of the Stackelberg game, we propose two algorithms: an approximation algorithm with provable guarantees and an efficient heuristic algorithm. In addition, for a special case where customers are disjoint, we propose an exact algorithm based on linear programming. Our experiments using real-world datasets demonstrate that our algorithms outperform a baseline algorithm even when the follower is a powerful competitor.
A patient seller aims to sell a good to an impatient buyer (i.e., one who discounts utility over time). The buyer will remain in the market for a period of time $T$, and her private value is drawn from a publicly known distribution. What is the reven ue-optimal pricing-curve (sequence of (price, time) pairs) for the seller? Is randomization of help here? Is the revenue-optimal pricing-curve computable in polynomial time? We answer these questions in this paper. We give an efficient algorithm for computing the revenue-optimal pricing curve. We show that pricing curves, that post a price at each point of time and let the buyer pick her utility maximizing time to buy, are revenue-optimal among a much broader class of sequential lottery mechanisms: namely, mechanisms that allow the seller to post a menu of lotteries at each point of time cannot get any higher revenue than pricing curves. We also show that the even broader class of mechanisms that allow the menu of lotteries to be adaptively set, can earn strictly higher revenue than that of pricing curves, and the revenue gap can be as big as the support size of the buyers value distribution.
76 - Shahar Dobzinski 2016
We study a central problem in Algorithmic Mechanism Design: constructing truthful mechanisms for welfare maximization in combinatorial auctions with submodular bidders. Dobzinski, Nisan, and Schapira provided the first mechanism that guarantees a non -trivial approximation ratio of $O(log^2 m)$ [STOC06], where $m$ is the number of items. This was subsequently improved to $O(log mlog log m)$ [Dobzinski, APPROX07] and then to $O(log m)$ [Krysta and Vocking, ICALP12]. In this paper we develop the first mechanism that breaks the logarithmic barrier. Specifically, the mechanism provides an approximation ratio of $O(sqrt {log m})$. Similarly to previous constructions, our mechanism uses polynomially many value and demand queries, and in fact provides the same approximation ratio for the larger class of XOS (a.k.a. fractionally subadditive) valuations. We also develop a computationally efficient implementation of the mechanism for combinatorial auctions with budget additive bidders. Although in general computing a demand query is NP-hard for budget additive valuations, we observe that the specific form of demand queries that our mechanism uses can be efficiently computed when bidders are budget additive.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا