ﻻ يوجد ملخص باللغة العربية
We study the inverse problem of recovering a vector field in $mathbb{R}^2$ from a set of new generalized $V$-line transforms in three different ways. First, we introduce the longitudinal and transverse $V$-line transforms for vector fields in $mathbb{R}^2$. We then give an explicit characterization of their respective kernels and show that they are complements of each other. We prove invertibility of each transform modulo their kernels and combine them to reconstruct explicitly the full vector field. In the second method, we combine the longitudinal and transverse V-line transforms with their corresponding first moment transforms and recover the full vector field from either pair. We show that the available data in each of these setups can be used to derive the signed V-line transform of both scalar component of the vector field, and use the known inversion of the latter. The final major result of this paper is the derivation of an exact closed form formula for reconstruction of the full vector field in $mathbb{R}^2$ from its star transform with weights. We solve this problem by relating the star transform of the vector field to the ordinary Radon transform of the scalar components of the field.
In this work we verify the sufficiency of a Jensens necessary and sufficient condition for a class of genus 0 or 1 entire functions to have only real zeros. They are Fourier transforms of even, positive, indefinitely differentiable, and very fast dec
Here we present a novel microlocal analysis of generalized Radon transforms which describe the integrals of $L^2$ functions of compact support over surfaces of revolution of $C^{infty}$ curves $q$. We show that the Radon transforms are elliptic Fouri
We continue the studies of Moutard-type transform for generalized analytic functions started in our previous paper: arXiv:1510.08764. In particular, we suggest an interpretation of generalized analytic functions as spinor fields and show that in the
The paper studies various properties of the V-line transform (VLT) in the plane and conical Radon transform (CRT) in $mathbb{R}^n$. VLT maps a function to a family of its integrals along trajectories made of two rays emanating from a common point. Th
We classify all functions which, when applied term by term, leave invariant the sequences of moments of positive measures on the real line. Rather unexpectedly, these functions are built of absolutely monotonic components, or reflections of them, wit