ﻻ يوجد ملخص باللغة العربية
The paper studies various properties of the V-line transform (VLT) in the plane and conical Radon transform (CRT) in $mathbb{R}^n$. VLT maps a function to a family of its integrals along trajectories made of two rays emanating from a common point. The CRT considered in this paper maps a function to a set of its integrals over surfaces of polyhedral cones. These types of operators appear in mathematical models of single scattering optical tomography, Compton camera imaging and other applications. We derive new explicit inversion formulae for VLT and CRT, as well as proving some previously known results using more intuitive geometric ideas. Using our inversion formula for VLT, we describe the range of that transformation when applied to a fairly broad class of functions and prove some support theorems. The efficiency of our method is demonstrated on several numerical examples. As an auxiliary result that plays a big role in this article, we derive a generalization of the Fundamental Theorem of Calculus, which we call Cone Differentiation Theorem.
We study the inverse problem of recovering a vector field in $mathbb{R}^2$ from a set of new generalized $V$-line transforms in three different ways. First, we introduce the longitudinal and transverse $V$-line transforms for vector fields in $mathbb
We show how polynomial mappings of degree k from a union of disjoint intervals onto [-1,1] generate a countable number of special cases of a certain generalization of the Chebyshev Polynomials. We also derive a new expression for these generalized Ch
First some definite integrals of W. H. L. Russell, almost all with trigonometric function integrands, are derived, and many generalized. Then a list is given in Russell-style of generalizations of integral identities of Amdeberhan and Moll. We conclu
Let $W$ denote a matrix $A_2$ weight. In this paper, we implement a scalar argument using the square function to deduce square-function type results for vector-valued functions in $L^2(mathbb{R},mathbb{C}^d)$. These results are then used to study the
We construct a family of second-order linear difference equations parametrized by the hypergeometric solution of the elliptic Painleve equation (or higher-order analogues), and admitting a large family of monodromy-preserving deformations. The soluti