ﻻ يوجد ملخص باللغة العربية
We investigate various questions concerning the reciprocal sum of divisors, or prime divisors, of the Mersenne numbers $2^n-1$. Conditional on the Elliott-Halberstam Conjecture and the Generalized Riemann Hypothesis, we determine $max_{nle x} sum_{p mid 2^n-1} 1/p$ to within $o(1)$ and $max_{nle x} sum_{dmid 2^n-1}1/d$ to within a factor of $1+o(1)$, as $xtoinfty$. This refines, conditionally, earlier estimates of ErdH{o}s and ErdH{o}s-Kiss-Pomerance. Conditionally (only) on GRH, we also determine $sum 1/d$ to within a factor of $1+o(1)$ where $d$ runs over all numbers dividing $2^n-1$ for some $nle x$. This conditionally confirms a conjecture of Pomerance and answers a question of Murty-Rosen-Silverman. Finally, we show that both $sum_{pmid 2^n-1} 1/p$ and $sum_{dmid 2^n-1}1/d$ admit continuous distribution functions in the sense of probabilistic number theory.
We consider the distribution in residue classes modulo primes $p$ of Eulers totient function $phi(n)$ and the sum-of-proper-divisors function $s(n):=sigma(n)-n$. We prove that the values $phi(n)$, for $nle x$, that are coprime to $p$ are asymptotical
In this research paper, relationship between every Mersenne prime and certain Natural numbers is explored. We begin by proving that every Mersenne prime is of the form {4n + 3,for some integer n} and generalize the result to all powers of 2. We also
In this paper some generalizations of the sum of powers of natural numbers is considered. In particular, the class of sums whose generating function is the power of the generating function for the classical sums of powers is studying. The so-called b
By $(mathbb{Z}^+)^{infty}$ we denote the set of all the infinite sequences $mathcal{S}={s_i}_{i=1}^{infty}$ of positive integers (note that all the $s_i$ are not necessarily distinct and not necessarily monotonic). Let $f(x)$ be a polynomial of nonne
Let $s(n):= sum_{dmid n,~d<n} d$ denote the sum of the proper divisors of $n$. It is natural to conjecture that for each integer $kge 2$, the equivalence [ text{$n$ is $k$th powerfree} Longleftrightarrow text{$s(n)$ is $k$th powerfree} ] holds almost