ترغب بنشر مسار تعليمي؟ اضغط هنا

A certain reciprocal power sum is never an integer

117   0   0.0 ( 0 )
 نشر من قبل Shaofang Hong
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

By $(mathbb{Z}^+)^{infty}$ we denote the set of all the infinite sequences $mathcal{S}={s_i}_{i=1}^{infty}$ of positive integers (note that all the $s_i$ are not necessarily distinct and not necessarily monotonic). Let $f(x)$ be a polynomial of nonnegative integer coefficients. Let $mathcal{S}_n:={s_1, ..., s_n}$ and $H_f(mathcal{S}_n):=sum_{k=1}^{n}frac{1}{f(k)^{s_{k}}}$. When $f(x)$ is linear, Feng, Hong, Jiang and Yin proved in [A generalization of a theorem of Nagell, Acta Math. Hungari, in press] that for any infinite sequence $mathcal{S}$ of positive integers, $H_f(mathcal{S}_n)$ is never an integer if $nge 2$. Now let deg$f(x)ge 2$. Clearly, $0<H_f(mathcal{S}_n)<zeta(2)<2$. But it is not clear whether the reciprocal power sum $H_f(mathcal{S}_n)$ can take 1 as its value. In this paper, with the help of a result of ErdH{o}s, we use the analytic and $p$-adic method to show that for any infinite sequence $mathcal{S}$ of positive integers and any positive integer $nge 2$, $H_f(mathcal{S}_n)$ is never equal to 1. Furthermore, we use a result of Kakeya to show that if $frac{1}{f(k)}lesum_{i=1}^inftyfrac{1}{f(k+i)}$ holds for all positive integers $k$, then the union set $bigcuplimits_{mathcal{S}in (mathbb{Z}^+)^{infty}} { H_f(mathcal{S}_n) | nin mathbb{Z}^+ }$ is dense in the interval $(0,alpha_f)$ with $alpha_f:=sum_{k=1}^{infty}frac{1}{f(k)}$. It is well known that $alpha_f= frac{1}{2}big(pi frac{e^{2pi}+1}{e^{2pi}-1}-1big)approx 1.076674$ when $f(x)=x^2+1$. Our dense result infers that when $f(x)=x^2+1$, for any sufficiently small $varepsilon >0$, there are positive integers $n_1$ and $n_2$ and infinite sequences $mathcal{S}^{(1)}$ and $mathcal{S}^{(2)}$ of positive integers such that $1-varepsilon<H_f(mathcal{S}^{(1)}_{n_1})<1$ and $1<H_f(mathcal{S}^{(2)}_{n_2})<1+varepsilon$.



قيم البحث

اقرأ أيضاً

We investigate various questions concerning the reciprocal sum of divisors, or prime divisors, of the Mersenne numbers $2^n-1$. Conditional on the Elliott-Halberstam Conjecture and the Generalized Riemann Hypothesis, we determine $max_{nle x} sum_{p mid 2^n-1} 1/p$ to within $o(1)$ and $max_{nle x} sum_{dmid 2^n-1}1/d$ to within a factor of $1+o(1)$, as $xtoinfty$. This refines, conditionally, earlier estimates of ErdH{o}s and ErdH{o}s-Kiss-Pomerance. Conditionally (only) on GRH, we also determine $sum 1/d$ to within a factor of $1+o(1)$ where $d$ runs over all numbers dividing $2^n-1$ for some $nle x$. This conditionally confirms a conjecture of Pomerance and answers a question of Murty-Rosen-Silverman. Finally, we show that both $sum_{pmid 2^n-1} 1/p$ and $sum_{dmid 2^n-1}1/d$ admit continuous distribution functions in the sense of probabilistic number theory.
172 - Jing Ma , Huayan Sun 2021
In this short, we study sums of the shape $sum_{nleqslant x}{f([x/n])}/{[x/n]},$ where $f$ is Euler totient function $varphi$, Dedekind function $Psi$, sum-of-divisors function $sigma$ or the alternating sum-of-divisors function $beta.$ We improve pr evious results when $f=varphi$ and derive new estimates when $f=Psi, f=sigma$ and $f=beta.$
93 - Gareth Jones , Shi Qiu 2020
We give two variations on a result of Wilkies on unary functions defianble in $mathbb{R}_{an,exp}$ that take integer values at positive integers. Provided that the functions grows slower than the function $2^x$, Wilkie showed that is must be eventual ly equal to a polynomial. We show the same conclusion under a stronger growth condition but only assuming that the function takes values sufficiently close to a integers at positive integers. In a different variation we show that it suffices to assume that the function takes integer values on a sufficiently dense subset of the positive integers(for instance primes), again under a stronger growth bound than that in Wilkies result.
For $ Esubset mathbb{F}_q^d$, let $Delta(E)$ denote the distance set determined by pairs of points in $E$. By using additive energies of sets on a paraboloid, Koh, Pham, Shen, and Vinh (2020) proved that if $E,Fsubset mathbb{F}_q^d $ are subsets with $|E||F|gg q^{d+frac{1}{3}}$ then $|Delta(E)+Delta(F)|> q/2$. They also proved that the threshold $q^{d+frac{1}{3}}$ is sharp when $|E|=|F|$. In this paper, we provide an improvement of this result in the unbalanced case, which is essentially sharp in odd dimensions. The most important tool in our proofs is an optimal $L^2$ restriction theorem for the sphere of zero radius.
Erd{o}s and Niven proved in 1946 that for any positive integers $m$ and $d$, there are at most finitely many integers $n$ for which at least one of the elementary symmetric functions of $1/m, 1/(m+d), ..., 1/(m+(n-1)d)$ are integers. Recently, Wang a nd Hong refined this result by showing that if $ngeq 4$, then none of the elementary symmetric functions of $1/m, 1/(m+d), ..., 1/(m+(n-1)d)$ is an integer for any positive integers $m$ and $d$. Let $f$ be a polynomial of degree at least $2$ and of nonnegative integer coefficients. In this paper, we show that none of the elementary symmetric functions of $1/f(1), 1/f(2), ..., 1/f(n)$ is an integer except for $f(x)=x^{m}$ with $mgeq2$ being an integer and $n=1$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا