ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of Dy substitution in the giant magnetocaloric properties of HoB$_{2}$

128   0   0.0 ( 0 )
 نشر من قبل Pedro Baptista de Castro
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, a massive magnetocaloric effect near the liquefaction temperature of hydrogen has been reported in the ferromagnetic material HoB$_{2}$. Here we investigate the effects of Dy substitution in the magnetocaloric properties of Ho$_{1-x}$Dy$_{x}$B$_{2}$ alloys ($textit{x}$ = 0, 0.3, 0.5, 0.7, 1.0). We find that the Curie temperature ($textit{T}$$_{C}$) gradually increases upon Dy substitution, while the magnitude of the magnetic entropy change |$Delta textit{S}_{M}$| at $textit{T}$ = $textit{T}_{C}$ decreases from 0.35 to 0.15 J cm$^{-3}$ K$^{-1}$ for a field change of 5 T. Due to the presence of two magnetic transitions in these alloys, despite the change in the peak magnitude of |$Delta textit{S}_{M}$|, the refrigerant capacity ($textit{RC}$) and refrigerant cooling power ($textit{RCP}$) remains almost constant in all doping range, which as large as 5.5 J cm$^{-3}$ and 7.0 J cm$^{-3}$ for a field change of 5 T. These results imply that this series of alloys could be an exciting candidate for magnetic refrigeration in the temperature range between 10-50 K.



قيم البحث

اقرأ أيضاً

Magnetic refrigeration exploits the magnetocaloric effect which is the entropy change upon application and removal of magnetic fields in materials, providing an alternate path for refrigeration other than the conventional gas cycles. While intensive research has uncovered a vast number of magnetic materials which exhibits large magnetocaloric effect, these properties for a large number of compounds still remain unknown. To explore new functional materials in this unknown space, machine learning is used as a guide for selecting materials which could exhibit large magnetocaloric effect. By this approach, HoB$_{2}$ is singled out, synthesized and its magnetocaloric properties are evaluated, leading to the experimental discovery of gigantic magnetic entropy change 40.1 J kg$^{-1}$ K$^{-1}$ (0.35 J cm$^{-3}$ K$^{-1}$) for a field change of 5 T in the vicinity of a ferromagnetic second-order phase transition with a Curie temperature of 15 K. This is the highest value reported so far, to our knowledge, near the hydrogen liquefaction temperature thus it is a highly suitable material for hydrogen liquefaction and low temperature magnetic cooling applications.
We report the magnetic entropy change (Delta Sm) in magnetoelectric Eu1-xBaxTiO3 for x = 0.1- 0.9. We find - delta Sm = 11 (40) J/kg.K in x = 0.1 for a field change of 1 (5) Tesla respectively, which is the largest value among all Eu-based oxides. De lta Sm arises from the field-induced suppression of the spin entropy of Eu2+:4f7 localized moments. While -delta Sm decreases with increasing x, -DeltaSm = 6.58 J/kg.K observed in the high spin diluted composition x = 0.9 is larger than that in many manganites. Our results indicate that these magnetoelectrics are potential candidates for cryogenic magnetic refrigeration.
A detailed study on the crystal structure and bulk magnetic properties of Cr substituted Ising type lanthanide gallium garnets $Ln_3text{CrGa}_4text{O}_{12}$ ($Ln$ = Tb, Dy, Ho) has been carried out using room temperature powder X-Ray and neutron dif fraction, magnetic susceptibility, isothermal magnetisation and heat capacity measurements. The magnetocaloric effect (MCE) in $Ln_3text{CrGa}_4text{O}_{12}$ is compared to that of $Ln_3text{Ga}_5text{O}_{12}$. In lower magnetic fields attainable by a permanent magnet ($leq$ 2 T), Cr substitution greatly enhances the MCE by 20% for $Ln$ = Dy and 120% for $Ln$ = Ho compared to the unsubstituted $Ln_3text{Ga}_5text{O}_{12}$. This is likely due to changes in the magnetic ground state as Cr substitution also significantly reduces the frustration in the magnetic lattice for the Ising type $Ln_3text{Ga}_5text{O}_{12}$.
75 - M.S. Song , K. K. Cho , B.Y. Kang 2019
The interplay of charge, spin, orbital and lattice degrees of freedom has recently received great interest due to its potential to improve the magnetocaloric effect (MCE) for the purpose of magnetic cooling applications. Here we propose a new mechani sm for a giant inverse MCE in rare-earth tetraborides, especially for Ho1-xDyxB4 (x = 0.0, 0.5, and 1.0). For x = 0.0, 0.5, and 1.0, the maximum entropy changes of the giant inverse MCE are found to be 22.7 J/kgK, 19.6 J/kgK, and 19.0 J/kgK with critical fields of 25 kOe, 40 kOe, and 50 kOe, respectively. It is remarkable that such a giant MCE is realized, even when applying a low magnetic field, which enables a field-tuned entropy change and brings about a significant advantage for several applications. For all compounds, we have systematically studied how the entropy changes as a function of the field and temperature and investigated their correlation with consecutive double transitions, i.e., the magnetic dipolar order at T = TN and the quadrupolar order at T = TQ (TQ < TN). We found that the maximum entropy change occurs at T = TQ and the critical field associated with the meta-magnetic transition, which is in good agreement with the experimental data. Thus, we elucidate that this unique behaviour is attributed to the strong coupling between magnetic dipoles and quadrupoles in the presence of strong spin-orbit coupling and geometric frustration. Our work offers new insights into both the academic interest of multipolar degrees of freedom in magnetic materials and the discovery of giant MCE with various applications for magnetic cooling systems.
Mechanical control of magnetic properties in magnetostrictive thin films offers the unexplored opportunity to employ surface wave acoustics in such a way that acoustic triggers dynamic magnetic effects. The strain-induced modulation of the magnetic a nisotropy can play the role of a high frequency varying effective magnetic field leading to ultrasonic tuning of electronic and magnetic properties of nanostructured materials, eventually integrated in semiconductor technology. Here, we report about the opportunity to employ surface acoustic waves to trigger magnetocaloric effect in MnAs(100nm)/GaAs(001) thin films. During the MnAs magnetostructural phase transition, in an interval range around room temperature (0{deg}C - 60{deg}C), ultrasonic waves (170 MHz) are strongly attenuated by the phase coexistence (up to 150 dB/cm). We show that the giant magnetocaloric effect of MnAs is responsible of the observed phenomenon. By a simple anelastic model we describe the temperature and the external magnetic field dependence of such a huge ultrasound attenuation. Strain-manipulation of the magnetocaloric effect could be a further interesting route for dynamic and static caloritronics and spintronics applications in semiconductor technology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا