ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrasonic triggering of giant magnetocaloric effect in MnAs thin films

558   0   0.0 ( 0 )
 نشر من قبل Massimiliano Marangolo
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Mechanical control of magnetic properties in magnetostrictive thin films offers the unexplored opportunity to employ surface wave acoustics in such a way that acoustic triggers dynamic magnetic effects. The strain-induced modulation of the magnetic anisotropy can play the role of a high frequency varying effective magnetic field leading to ultrasonic tuning of electronic and magnetic properties of nanostructured materials, eventually integrated in semiconductor technology. Here, we report about the opportunity to employ surface acoustic waves to trigger magnetocaloric effect in MnAs(100nm)/GaAs(001) thin films. During the MnAs magnetostructural phase transition, in an interval range around room temperature (0{deg}C - 60{deg}C), ultrasonic waves (170 MHz) are strongly attenuated by the phase coexistence (up to 150 dB/cm). We show that the giant magnetocaloric effect of MnAs is responsible of the observed phenomenon. By a simple anelastic model we describe the temperature and the external magnetic field dependence of such a huge ultrasound attenuation. Strain-manipulation of the magnetocaloric effect could be a further interesting route for dynamic and static caloritronics and spintronics applications in semiconductor technology.



قيم البحث

اقرأ أيضاً

143 - Daesu Lee , A. Yoon , S. Y. Jang 2011
We report on nanoscale strain gradients in ferroelectric HoMnO3 epitaxial thin films, resulting in a giant flexoelectric effect. Using grazing-incidence in-plane X-ray diffraction, we measured strain gradients in the films, which were 6 or 7 orders o f magnitude larger than typical values reported for bulk oxides. The combination of transmission electron microscopy, electrical measurements, and electrostatic calculations showed that flexoelectricity provides a means of tuning the physical properties of ferroelectric epitaxial thin films, such as domain configurations and hysteresis curves.
The magnetic coupling between iron and alpha - MnAs in the epitaxial system Fe/MnAs/GaAs(001) has been studied at the sub-micron scale, using element selective x-ray photoemission electron microscopy. At room temperature, MnAs layers display ridges a nd grooves, alternating alpha (magnetic) and beta (non-magnetic) phases. The self-organised microstructure of MnAs and the stray fields that it generates govern the local alignment between the Fe and alpha - MnAs magnetization directions, which is mostly antiparallel with a marked dependence upon the magnetic domain size.
Strong electronic correlations can produce remarkable phenomena such as metal-insulator transitions and greatly enhance superconductivity, thermoelectricity, or optical non-linearity. In correlated systems, spatially varying charge textures also ampl ify magnetoelectric effects or electroresistance in mesostructures. However, how spatially varying spin textures may influence electron transport in the presence of correlations remains unclear. Here we demonstrate a very large topological Hall effect (THE) in thin films of a lightly electron-doped charge-transfer insulator, (Ca, Ce)MnO3. Magnetic force microscopy reveals the presence of magnetic bubbles, whose density vs. magnetic field peaks near the THE maximum, as is expected to occur in skyrmion systems. The THE critically depends on carrier concentration and diverges at low doping, near the metal-insulator transition. We discuss the strong amplification of the THE by correlation effects and give perspectives for its non-volatile control by electric fields.
An approach to adjusting the conduction band population for tuning the magnetic and magnetocaloric response of EuO1-{delta} thin films through control of oxygen vacancies ({delta} = 0, 0.025, and 0.09) is presented. The films each showed a paramagnet ic to ferromagnetic transition around 65 K, with an additional magnetic ordering transition at higher temperatures in the oxygen deficient samples. All transitions are observed to be of second order. A maximum magnetic entropy change of 6.4 J/kg K over a field change of 2 T with a refrigerant capacity of 223 J/kg was found in the sample with {delta} = 0, and in all cases the refrigerant capacities of the thin films under study were found to exceed that reported for bulk EuO. Adjusting the oxygen content was shown to produce table-like magnetocaloric effects, desirable for ideal Ericsson-cycle magnetic refrigeration. These films are thus excellent candidates for small-scale magnetic cooling technology in the liquid nitrogen temperature range.
We report the magnetic entropy change (Delta Sm) in magnetoelectric Eu1-xBaxTiO3 for x = 0.1- 0.9. We find - delta Sm = 11 (40) J/kg.K in x = 0.1 for a field change of 1 (5) Tesla respectively, which is the largest value among all Eu-based oxides. De lta Sm arises from the field-induced suppression of the spin entropy of Eu2+:4f7 localized moments. While -delta Sm decreases with increasing x, -DeltaSm = 6.58 J/kg.K observed in the high spin diluted composition x = 0.9 is larger than that in many manganites. Our results indicate that these magnetoelectrics are potential candidates for cryogenic magnetic refrigeration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا