ترغب بنشر مسار تعليمي؟ اضغط هنا

Persistence of homology over commutative noetherian rings

198   0   0.0 ( 0 )
 نشر من قبل Saeed Nasseh
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe new classes of noetherian local rings $R$ whose finitely generated modules $M$ have the property that $Tor_i^R(M,M)=0$ for $igg 0$ implies that $M$ has finite projective dimension, or $Ext^i_R(M,M)=0$ for $igg 0$ implies that $M$ has finite projective dimension or finite injective dimension.



قيم البحث

اقرأ أيضاً

Let R be a commutative Noetherian ring. We introduce the notion of colocalization functors with supports in arbitrary subsets of Spec R, which is a natural generalization of right derived functors of section functors with supports in specialization-c losed subsets. We prove that the local duality theorem and the vanishing theorem of Grothendieck type hold for colocalization functors.
218 - Jesse Burke 2011
We study rings which have Noetherian cohomology under the action of a ring of cohomology operators. The main result is a criterion for a complex of modules over such a ring to have finite injective dimension. This criterion generalizes, by removing f initeness conditions, and unifies several previous results. In particular we show that for a module over a ring with Noetherian cohomology, if all higher self-extensions of the module vanish then it must have finite injective dimension. Examples of rings with Noetherian cohomology include commutative complete intersection rings and finite dimensional cocommutative Hopf algebras over a field.
Let $R$ be a commutative ring. We investigate $R$-modules which can be written as emph{finite} sums of {it {second}} $R$-submodules (we call them emph{second representable}). We provide sufficient conditions for an $R$-module $M$ to be have a (minima l) second presentation, in particular within the class of lifting modules. Moreover, we investigate the class of (emph{main}) emph{second attached prime ideals} related to a module with such a presentation.
We study five different types of the homology of a Lie algebra over a commutative ring which are naturally isomorphic over fields. We show that they are not isomorphic over commutative rings, even over $mathbb Z,$ and study connections between them. In particular, we show that they are naturally isomorphic in the case of a Lie algebra which is flat as a module. As an auxiliary result we prove that the Koszul complex of a module $M$ over a principal ideal domain that connects the exterior and the symmetric powers $0to Lambda^n Mto M otimes Lambda^{n-1} M to dots to S^{n-1}M otimes M to S^nMto 0 $ is purely acyclic.
Let $R$ be a commutative ring and $M$ a non-zero $R$-module. We introduce the class of emph{pseudo strongly hollow submodules} (emph{PS-hollow submodules}, for short) of $M$. Inspired by the theory of modules with emph{secondary representations}, we investigate modules which can be written as emph{finite} sums of PS-hollow submodules. In particular, we provide existence and uniqueness theorems for the existence of emph{minimal} PS-hollow strongly representations of modules over Artinian rings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا