ترغب بنشر مسار تعليمي؟ اضغط هنا

Finite injective dimension over rings with Noetherian cohomology

236   0   0.0 ( 0 )
 نشر من قبل Jesse Burke
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English
 تأليف Jesse Burke




اسأل ChatGPT حول البحث

We study rings which have Noetherian cohomology under the action of a ring of cohomology operators. The main result is a criterion for a complex of modules over such a ring to have finite injective dimension. This criterion generalizes, by removing finiteness conditions, and unifies several previous results. In particular we show that for a module over a ring with Noetherian cohomology, if all higher self-extensions of the module vanish then it must have finite injective dimension. Examples of rings with Noetherian cohomology include commutative complete intersection rings and finite dimensional cocommutative Hopf algebras over a field.



قيم البحث

اقرأ أيضاً

186 - Francois Couchot 2011
It is proven that each indecomposable injective module over a valuation domain $R$ is polyserial if and only if each maximal immediate extension $widehat{R}$ of $R$ is of finite rank over the completion $widetilde{R}$ of $R$ in the $R$-topology. In t his case, for each indecomposable injective module $E$, the following invariants are finite and equal: its Malcev rank, its Fleischer rank and its dual Goldie dimension. Similar results are obtained for chain rings satisfying some additional properties. It is also shown that each indecomposable injective module over one Krull-dimensional local Noetherian rings has finite Malcev rank. The preservation of Goldie dimension finiteness by localization is investigated too.
We describe new classes of noetherian local rings $R$ whose finitely generated modules $M$ have the property that $Tor_i^R(M,M)=0$ for $igg 0$ implies that $M$ has finite projective dimension, or $Ext^i_R(M,M)=0$ for $igg 0$ implies that $M$ has fini te projective dimension or finite injective dimension.
Let R be a commutative ring with identity. We investigate some ring-theoretic properties of weakly Laskerian R-modules. Our results indicate that weakly Laskerian rings behave as Noetherian ones in many respects. However, we provide some examples to illustrate the strange behavior of these rings in some other respects.
For a finitely generated module $ M $ over a commutative Noetherian ring $R$, we settle the Auslander-Reiten conjecture when at least one of ${rm Hom}_R(M,R)$ and ${rm Hom}_R(M,M)$ has finite injective dimension. A number of new characterizations of Gorenstein local rings are also obtained in terms of vanishing of certain Ext and finite injective dimension of Hom.
Let $X$ be a topological space with Noetherian mod $p$ cohomology and let $C^*(X;mathbb{F}_p)$ be the commutative ring spectrum of $mathbb{F}_p$-valued cochains on $X$. The goal of this paper is to exhibit conditions under which the category of modul e spectra on $C^*(X;mathbb{F}_p)$ is stratified in the sense of Benson, Iyengar, Krause, providing a classification of all its localizing subcategories. We establish stratification in this sense for classifying spaces of a large class of topological groups including Kac--Moody groups as well as whenever $X$ admits an $H$-space structure. More generally, using Lannes theory we prove that stratification for $X$ is equivalent to a condition that generalizes Chouinards theorem for finite groups. In particular, this relates the generalized telescope conjecture in this setting to a question in unstable homotopy theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا