ترغب بنشر مسار تعليمي؟ اضغط هنا

Matching Queues with Reneging: a Product Form Solution

93   0   0.0 ( 0 )
 نشر من قبل Chiwei Yan
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by growing applications in two-sided markets, we study a parallel matching queue with reneging. Demand and supply units arrive to the system and are matched in an FCFS manner according to a compatibility graph specified by an N-system. If they cannot be matched upon arrival, they queue and may abandon the system as time goes by. We derive explicit product forms of the steady state distributions of this system by identifying a partial balance condition.



قيم البحث

اقرأ أيضاً

This paper presents a heavy-traffic analysis of the behavior of a single-server queue under an Earliest-Deadline-First (EDF) scheduling policy in which customers have deadlines and are served only until their deadlines elapse. The performance of the system is measured by the fraction of reneged work (the residual work lost due to elapsed deadlines) which is shown to be minimized by the EDF policy. The evolution of the lead time distribution of customers in queue is described by a measure-valued process. The heavy traffic limit of this (properly scaled) process is shown to be a deterministic function of the limit of the scaled workload process which, in turn, is identified to be a doubly reflected Brownian motion. This paper complements previous work by Doytchinov, Lehoczky and Shreve on the EDF discipline in which customers are served to completion even after their deadlines elapse. The fraction of reneged work in a heavily loaded system and the fraction of late work in the corresponding system without reneging are compared using explicit formulas based on the heavy traffic approximations. The formulas are validated by simulation results.
The large-time behavior of a nonlinearly coupled pair of measure-valued transport equations with discontinuous boundary conditions, parameterized by a positive real-valued parameter $lambda$, is considered. These equations describe the hydrodynamic o r fluid limit of many-server queues with reneging (with traffic intensity $lambda$), which model phenomena in diverse disciplines, including biology and operations research. For a broad class of reneging distributions with finite mean and service distributions with finite mean and hazard rate function that is either decreasing or bounded away from zero and infinity, it is shown that if the fluid equations have a unique invariant state, then the Dirac measure at this state is the unique random fixed point of the fluid equations, which implies that the stationary distributions of scaled $N$-server systems converge to the unique invariant state of the corresponding fluid equations. Moreover, when $lambda e 1$, it is shown that the solution to the fluid equation starting from any initial condition converges to this unique invariant state in the large time limit. The proof techniques are different under the two sets of assumptions on the service distribution. When the hazard rate function is decreasing, a reformulation of the dynamics in terms of a certain renewal equation is used, in conjunction with recursive asymptotic estimates. When the hazard rate function is bounded away from zero and infinity, the proof uses an extended relative entropy functional as a Lyapunov function. Analogous large-time convergence results are also established for a system of coupled measure-valued equations modeling a multiclass queue.
We characterize the class of exchangeable feature allocations assigning probability $V_{n,k}prod_{l=1}^{k}W_{m_{l}}U_{n-m_{l}}$ to a feature allocation of $n$ individuals, displaying $k$ features with counts $(m_{1},ldots,m_{k})$ for these features. Each element of this class is parametrized by a countable matrix $V$ and two sequences $U$ and $W$ of non-negative weights. Moreover, a consistency condition is imposed to guarantee that the distribution for feature allocations of $n-1$ individuals is recovered from that of $n$ individuals, when the last individual is integrated out. In Theorem 1.1, we prove that the only members of this class satisfying the consistency condition are mixtures of the Indian Buffet Process over its mass parameter $gamma$ and mixtures of the Beta--Bernoulli model over its dimensionality parameter $N$. Hence, we provide a characterization of these two models as the only, up to randomization of the parameters, consistent exchangeable feature allocations having the required product form.
Exponential single server queues with state dependent arrival and service rates are considered which evolve under influences of external environments. The transitions of the queues are influenced by the environments state and the movements of the env ironment depend on the status of the queues (bi-directional interaction). The structure of the environment is constructed in a way to encompass various models from the recent Operation Research literature, where a queue is coupled e.g. with an inventory or with reliability issues. With a Markovian joint queueing-environment process we prove separability for a large class of such interactive systems, i.e. the steady state distribution is of product form and explicitly given: The queue and the environment processes decouple asymptotically and in steady state. For non-separable systems we develop ergodicity criteria via Lyapunov functions. By examples we show principles for bounding throughputs of non-separable systems by throughputs of two separable systems as upper and lower bound.
In this paper we study the number of customers in infinite-server queues with a self-exciting (Hawkes) arrival process. Initially we assume that service requirements are exponentially distributed and that the Hawkes arrival process is of a Markovian nature. We obtain a system of differential equations that characterizes the joint distribution of the arrival intensity and the number of customers. Moreover, we provide a recursive procedure that explicitly identifies (transient and stationary) moments. Subsequently, we allow for non-Markovian Hawkes arrival processes and non-exponential service times. By viewing the Hawkes process as a branching process, we find that the probability generating function of the number of customers in the system can be expressed in terms of the solution of a fixed-point equation. We also include various asymptotic results: we derive the tail of the distribution of the number of customers for the case that the intensity jumps of the Hawkes process are heavy-tailed, and we consider a heavy-traffic regime. We conclude the paper by discussing how our results can be used computationally and by verifying the numerical results via simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا