ترغب بنشر مسار تعليمي؟ اضغط هنا

A characterization of product-form exchangeable feature probability functions

186   0   0.0 ( 0 )
 نشر من قبل Stefano Favaro
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We characterize the class of exchangeable feature allocations assigning probability $V_{n,k}prod_{l=1}^{k}W_{m_{l}}U_{n-m_{l}}$ to a feature allocation of $n$ individuals, displaying $k$ features with counts $(m_{1},ldots,m_{k})$ for these features. Each element of this class is parametrized by a countable matrix $V$ and two sequences $U$ and $W$ of non-negative weights. Moreover, a consistency condition is imposed to guarantee that the distribution for feature allocations of $n-1$ individuals is recovered from that of $n$ individuals, when the last individual is integrated out. In Theorem 1.1, we prove that the only members of this class satisfying the consistency condition are mixtures of the Indian Buffet Process over its mass parameter $gamma$ and mixtures of the Beta--Bernoulli model over its dimensionality parameter $N$. Hence, we provide a characterization of these two models as the only, up to randomization of the parameters, consistent exchangeable feature allocations having the required product form.



قيم البحث

اقرأ أيضاً

154 - Lucie Bernard 2021
Let g : $Omega$ = [0, 1] d $rightarrow$ R denote a Lipschitz function that can be evaluated at each point, but at the price of a heavy computational time. Let X stand for a random variable with values in $Omega$ such that one is able to simulate, at least approximately, according to the restriction of the law of X to any subset of $Omega$. For example, thanks to Markov chain Monte Carlo techniques, this is always possible when X admits a density that is known up to a normalizing constant. In this context, given a deterministic threshold T such that the failure probability p := P(g(X) > T) may be very low, our goal is to estimate the latter with a minimal number of calls to g. In this aim, building on Cohen et al. [9], we propose a recursive and optimal algorithm that selects on the fly areas of interest and estimate their respective probabilities.
Motivated by growing applications in two-sided markets, we study a parallel matching queue with reneging. Demand and supply units arrive to the system and are matched in an FCFS manner according to a compatibility graph specified by an N-system. If t hey cannot be matched upon arrival, they queue and may abandon the system as time goes by. We derive explicit product forms of the steady state distributions of this system by identifying a partial balance condition.
In this paper, a nonparametric maximum likelihood (ML) estimator for band-limited (BL) probability density functions (pdfs) is proposed. The BLML estimator is consistent and computationally efficient. To compute the BLML estimator, three approximate algorithms are presented: a binary quadratic programming (BQP) algorithm for medium scale problems, a Trivial algorithm for large-scale problems that yields a consistent estimate if the underlying pdf is strictly positive and BL, and a fast implementation of the Trivial algorithm that exploits the band-limited assumption and the Nyquist sampling theorem (BLMLQuick). All three BLML estimators outperform kernel density estimation (KDE) algorithms (adaptive and higher order KDEs) with respect to the mean integrated squared error for data generated from both BL and infinite-band pdfs. Further, the BLMLQuick estimate is remarkably faster than the KD algorithms. Finally, the BLML method is applied to estimate the conditional intensity function of a neuronal spike train (point process) recorded from a rats entorhinal cortex grid cell, for which it outperforms state-of-the-art estimators used in neuroscience.
Given ${X_k}$ is a martingale difference sequence. And given another ${Y_k}$ which has dependency within the sequence. Assume ${X_k}$ is independent with ${Y_k}$, we study the properties of the sums of product of two sequences $sum_{k=1}^{n} X_k Y_k$ . We obtain product-CLT, a modification of classical central limit theorem, which can be useful in the study of random projections. We also obtain the rate of convergence which is similar to the Berry-Essen theorem in the classical CLT.
We prove the asymptotic independence of the empirical process $alpha_n = sqrt{n}( F_n - F)$ and the rescaled empirical distribution function $beta_n = n (F_n(tau+frac{cdot}{n})-F_n(tau))$, where $F$ is an arbitrary cdf, differentiable at some point $ tau$, and $F_n$ the corresponding empricial cdf. This seems rather counterintuitive, since, for every $n in N$, there is a deterministic correspondence between $alpha_n$ and $beta_n$. Precisely, we show that the pair $(alpha_n,beta_n)$ converges in law to a limit having independent components, namely a time-transformed Brownian bridge and a two-sided Poisson process. Since these processes have jumps, in particular if $F$ itself has jumps, the Skorokhod product space $D(R) times D(R)$ is the adequate choice for modeling this convergence in. We develop a short convergence theory for $D(R) times D(R)$ by establishing the classical principle, devised by Yu. V. Prokhorov, that finite-dimensional convergence and tightness imply weak convergence. Several tightness criteria are given. Finally, the convergence of the pair $(alpha_n,beta_n)$ implies convergence of each of its components, thus, in passing, we provide a thorough proof of these known convergence results in a very general setting. In fact, the condition on $F$ to be differentiable in at least one point is only required for $beta_n$ to converge and can be further weakened.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا