ﻻ يوجد ملخص باللغة العربية
We characterize the class of exchangeable feature allocations assigning probability $V_{n,k}prod_{l=1}^{k}W_{m_{l}}U_{n-m_{l}}$ to a feature allocation of $n$ individuals, displaying $k$ features with counts $(m_{1},ldots,m_{k})$ for these features. Each element of this class is parametrized by a countable matrix $V$ and two sequences $U$ and $W$ of non-negative weights. Moreover, a consistency condition is imposed to guarantee that the distribution for feature allocations of $n-1$ individuals is recovered from that of $n$ individuals, when the last individual is integrated out. In Theorem 1.1, we prove that the only members of this class satisfying the consistency condition are mixtures of the Indian Buffet Process over its mass parameter $gamma$ and mixtures of the Beta--Bernoulli model over its dimensionality parameter $N$. Hence, we provide a characterization of these two models as the only, up to randomization of the parameters, consistent exchangeable feature allocations having the required product form.
Let g : $Omega$ = [0, 1] d $rightarrow$ R denote a Lipschitz function that can be evaluated at each point, but at the price of a heavy computational time. Let X stand for a random variable with values in $Omega$ such that one is able to simulate, at
Motivated by growing applications in two-sided markets, we study a parallel matching queue with reneging. Demand and supply units arrive to the system and are matched in an FCFS manner according to a compatibility graph specified by an N-system. If t
In this paper, a nonparametric maximum likelihood (ML) estimator for band-limited (BL) probability density functions (pdfs) is proposed. The BLML estimator is consistent and computationally efficient. To compute the BLML estimator, three approximate
Given ${X_k}$ is a martingale difference sequence. And given another ${Y_k}$ which has dependency within the sequence. Assume ${X_k}$ is independent with ${Y_k}$, we study the properties of the sums of product of two sequences $sum_{k=1}^{n} X_k Y_k$
We prove the asymptotic independence of the empirical process $alpha_n = sqrt{n}( F_n - F)$ and the rescaled empirical distribution function $beta_n = n (F_n(tau+frac{cdot}{n})-F_n(tau))$, where $F$ is an arbitrary cdf, differentiable at some point $