ﻻ يوجد ملخص باللغة العربية
Recently, the advancement of deep learning in discriminative feature learning from 3D LiDAR data has led to rapid development in the field of autonomous driving. However, automated processing uneven, unstructured, noisy, and massive 3D point clouds is a challenging and tedious task. In this paper, we provide a systematic review of existing compelling deep learning architectures applied in LiDAR point clouds, detailing for specific tasks in autonomous driving such as segmentation, detection, and classification. Although several published research papers focus on specific topics in computer vision for autonomous vehicles, to date, no general survey on deep learning applied in LiDAR point clouds for autonomous vehicles exists. Thus, the goal of this paper is to narrow the gap in this topic. More than 140 key contributions in the recent five years are summarized in this survey, including the milestone 3D deep architectures, the remarkable deep learning applications in 3D semantic segmentation, object detection, and classification; specific datasets, evaluation metrics, and the state of the art performance. Finally, we conclude the remaining challenges and future researches.
3D perception using sensors under vehicle industrial standard is the rigid demand in autonomous driving. MEMS LiDAR emerges with irresistible trend due to its lower cost, more robust, and meeting the mass-production standards. However, it suffers sma
LiDAR point clouds contain measurements of complicated natural scenes and can be used to update digital elevation models, glacial monitoring, detecting faults and measuring uplift detecting, forest inventory, detect shoreline and beach volume changes
Point cloud datasets for perception tasks in the context of autonomous driving often rely on high resolution 64-layer Light Detection and Ranging (LIDAR) scanners. They are expensive to deploy on real-world autonomous driving sensor architectures whi
Anticipating the future in a dynamic scene is critical for many fields such as autonomous driving and robotics. In this paper we propose a class of novel neural network architectures to predict future LiDAR frames given previous ones. Since the groun
Point cloud learning has lately attracted increasing attention due to its wide applications in many areas, such as computer vision, autonomous driving, and robotics. As a dominating technique in AI, deep learning has been successfully used to solve v