ﻻ يوجد ملخص باللغة العربية
We improve the estimation of the distribution of the nontrivial zeros of Riemann zeta function $zeta(sigma+it)$ for sufficiently large $t$, which is based on an exact calculation of some special logarithmic integrals of nonvanishing $zeta(sigma+it)$ along well-chosen contours. A special and single-valued coordinate transformation $s=tau(z)$ is chosen as the inverse of $z=chi(s)$, and the functional equation $zeta(s) = chi(s)zeta(1-s)$ is simplified as $G(z) = z, G_-(frac{1}{z})$ in the $z$ coordinate, where $G(z)=zeta(s)=zetacirctau(z)$ and $G_-$ is the conjugated branch of $G$. Two types of special and symmetric contours $partial D_{epsilon}^1$ and $partial D_{epsilon}^2$ in the $s$ coordinate are specified, and improper logarithmic integrals of nonvanishing $zeta(s)$ along $partial D_{epsilon}^1$ and $partial D_{epsilon}^2$ can be calculated as $2pi i$ and $0$ respectively, depending on the total increase in the argument of $z=chi(s)$. Any domains in the critical strip for sufficiently large $t$ can be covered by the domains $D_{epsilon}^1$ or $D_{epsilon}^2$, and the distribution of nontrivial zeros of $zeta(s)$ is revealed in the end, which is more subtle than Riemanns initial hypothesis and in rhythm with the argument of $chi(frac{1}{2}+it)$.
In 2008 I thought I found a proof of the Riemann Hypothesis, but there was an error. In the Spring 2020 I believed to have fixed the error, but it cannot be fixed. I describe here where the error was. It took me several days to find the error in a ca
The Hardy hypothesis, as an analogue to the Riemann hypothesis for the Riemann zeta function, is a conjecture proposed by Hardy in 1940, that all of the nontrivial zeros for the Ramanujan zeta function have a real part equal to 6. In this paper, we p
We study the limit distribution of eigenvalues of a Ruelle operator (which is also called the Thurston pushforward operator) for the dynamical system $z mapsto z^2+c$ when $c<-2$ and tends to $-2$.
This is a review of some of the interesting properties of the Riemann Zeta Function.
We compute the asymptotics of the fourth moment of the Riemann zeta function times an arbitrary Dirichlet polynomial of length $T^{{1/11} - epsilon}$