ترغب بنشر مسار تعليمي؟ اضغط هنا

On the distribution of zeros of a Ruelle zeta-function

125   0   0.0 ( 0 )
 نشر من قبل Genadi Levin
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the limit distribution of eigenvalues of a Ruelle operator (which is also called the Thurston pushforward operator) for the dynamical system $z mapsto z^2+c$ when $c<-2$ and tends to $-2$.



قيم البحث

اقرأ أيضاً

132 - Jianyun Zhang 2020
We improve the estimation of the distribution of the nontrivial zeros of Riemann zeta function $zeta(sigma+it)$ for sufficiently large $t$, which is based on an exact calculation of some special logarithmic integrals of nonvanishing $zeta(sigma+it)$ along well-chosen contours. A special and single-valued coordinate transformation $s=tau(z)$ is chosen as the inverse of $z=chi(s)$, and the functional equation $zeta(s) = chi(s)zeta(1-s)$ is simplified as $G(z) = z, G_-(frac{1}{z})$ in the $z$ coordinate, where $G(z)=zeta(s)=zetacirctau(z)$ and $G_-$ is the conjugated branch of $G$. Two types of special and symmetric contours $partial D_{epsilon}^1$ and $partial D_{epsilon}^2$ in the $s$ coordinate are specified, and improper logarithmic integrals of nonvanishing $zeta(s)$ along $partial D_{epsilon}^1$ and $partial D_{epsilon}^2$ can be calculated as $2pi i$ and $0$ respectively, depending on the total increase in the argument of $z=chi(s)$. Any domains in the critical strip for sufficiently large $t$ can be covered by the domains $D_{epsilon}^1$ or $D_{epsilon}^2$, and the distribution of nontrivial zeros of $zeta(s)$ is revealed in the end, which is more subtle than Riemanns initial hypothesis and in rhythm with the argument of $chi(frac{1}{2}+it)$.
205 - Jorma Jormakka 2020
In 2008 I thought I found a proof of the Riemann Hypothesis, but there was an error. In the Spring 2020 I believed to have fixed the error, but it cannot be fixed. I describe here where the error was. It took me several days to find the error in a ca reful checking before a possible submission to a payable review offered by one leading journal. There were three simple lemmas and one simple theorem, all were correct, yet there was an error: what Lemma 2 proved was not exactly what Lemma 3 needed. So, it was the connection of the lemmas. This paper came out empty, but I have found a different proof of the Riemann Hypothesis and it seems so far correct. In the discussion at the end of this paper I raise a matter that I think is of importance to the review process in mathematics.
We propose a field-theoretic interpretation of Ruelle zeta function, and show how it can be seen as the partition function for $BF$ theory when an unusual gauge fixing condition on contact manifolds is imposed. This suggests an alternative rephrasing of a conjecture due to Fried on the equivalence between Ruelle zeta function and analytic torsion, in terms of homotopies of Lagrangian submanifolds.
387 - Xiao-Jun Yang 2018
The Hardy hypothesis, as an analogue to the Riemann hypothesis for the Riemann zeta function, is a conjecture proposed by Hardy in 1940, that all of the nontrivial zeros for the Ramanujan zeta function have a real part equal to 6. In this paper, we p ropose the power series expansion for the entire Ramanujan zeta function using the work of Mordell. Then, we suggest an alternative infinite product for the entire Ramanujan zeta function derived from the work of Conrey and Ghosh. We also establish the class of the entire Ramanujan zeta function related to the functional equation coming from Wilton. Motivated by the work of Lekkerkerker, we prove an conjecture due to Bruijn that all of the zeros of the Ramanujan Xi function are nonzero real numbers. From theory of the entire functions, we also prove that the Hardy hypothesis is true.
88 - Luchezar Stoyanov 2017
We prove a comprehensive version of the Ruelle-Perron-Frobenius Theorem with explicit estimates of the spectral radius of the Ruelle transfer operator and various other quantities related to spectral properties of this operator. The novelty here is t hat the Holder constant of the function generating the operator appears only polynomially, not exponentially as in previous known estimates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا