ﻻ يوجد ملخص باللغة العربية
Continuous robot operation in extreme scenarios such as underground mines or sewers is difficult because exteroceptive sensors may fail due to fog, darkness, dirt or malfunction. So as to enable autonomous navigation in these kinds of situations, we have developed a type of proprioceptive localization which exploits the foot contacts made by a quadruped robot to localize against a prior map of an environment, without the help of any camera or LIDAR sensor. The proposed method enables the robot to accurately re-localize itself after making a sequence of contact events over a terrain feature. The method is based on Sequential Monte Carlo and can support both 2.5D and 3D prior map representations. We have tested the approach online and onboard the ANYmal quadruped robot in two different scenarios: the traversal of a custom built wooden terrain course and a wall probing and following task. In both scenarios, the robot is able to effectively achieve a localization match and to execute a desired pre-planned path. The method keeps the localization error down to 10cm on feature rich terrain by only using its feet, kinematic and inertial sensing.
Legged robot navigation in extreme environments can hinder the use of cameras and laser scanners due to darkness, air obfuscation or sensor damage. In these conditions, proprioceptive sensing will continue to work reliably. In this paper, we propose
Understanding the gap between simulation and reality is critical for reinforcement learning with legged robots, which are largely trained in simulation. However, recent work has resulted in sometimes conflicting conclusions with regard to which facto
Deep reinforcement learning (RL) uses model-free techniques to optimize task-specific control policies. Despite having emerged as a promising approach for complex problems, RL is still hard to use reliably for real-world applications. Apart from chal
Planning locomotion trajectories for legged microrobots is challenging because of their complex morphology, high frequency passive dynamics, and discontinuous contact interactions with their environment. Consequently, such research is often driven by
In this paper, we aim to improve the robustness of dynamic quadrupedal locomotion through two aspects: 1) fast model predictive foothold planning, and 2) applying LQR to projected inverse dynamic control for robust motion tracking. In our proposed pl